Review on Gene regulation: DNA-protein and protein-protein interactions and their regulatory elements


  • Safir Khan University of science and technology china
  • Munir Ullah khan 2MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China


transcription, protein interactions, transcription factors, transcriptional regulators.


The non-coding elements that control transcription are found in the chromatin structure of organisms. Recent findings identify the non-coding regulatory elements (e.g., enhancers, silencers, promoters) that control transcription and examine their respective protein interactions. The multiple topological environment limitations, including interactions of promoter-enhancer and specific enhancer-bound proteins with variable promoter compatibility, begin to shape a picture. These transcription factors and co-factors contribute to various expressions based on which enhancers and promoters are found inside sequences. A novel trait of transcription factors and co-factors establishes nuclear microenvironments or membranes compartments with phase-separated liquid characteristics. These settings are capable of enriching some proteins and tiny molecules at the expense of others. To better understand gene regulation


Download data is not yet available.

Author Biography

Munir Ullah khan, 2MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

2MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China



Rodriguez, J. and D.R. Larson, Transcription in living cells: Molecular mechanisms of bursting. Annual review of biochemistry, 2020. 89: p. 189-212.

Chubb, J.R., et al., Transcriptional pulsing of a developmental gene. Current biology, 2006. 16(10): p. 1018-1025.

Rodriguez, J., et al., Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell, 2019. 176(1-2): p. 213-226. e18.

Ko, M., H. Nakauchi, and N. Takahashi, The dose dependence of glucocorticoid‐inducible gene expression results from changes in the number of transcriptionally active templates. The EMBO journal, 1990. 9(9): p. 2835-2842.

Donovan, B.T., et al., Live‐cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. The EMBO journal, 2019. 38(12): p. e100809.

Stavreva, D.A., et al., Transcriptional bursting and co-bursting regulation by steroid hormone release pattern and transcription factor mobility. Molecular cell, 2019. 75(6): p. 1161-1177. e11.

Bartman, C.R., et al., Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Molecular cell, 2019. 73(3): p. 519-532. e4.

Larsson, A.J., et al., Genomic encoding of transcriptional burst kinetics. Nature, 2019. 565(7738): p. 251-254.

Nora, E.P., et al., Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 2012. 485(7398): p. 381-385.

Sexton, T., et al., Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 2012. 148(3): p. 458-472.

Dixon, J.R., et al., Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012. 485(7398): p. 376-380.

De Laat, W. and D. Duboule, Topology of mammalian developmental enhancers and their regulatory landscapes. Nature, 2013. 502(7472): p. 499-506.

Lupiáñez, D.G., et al., Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell, 2015. 161(5): p. 1012-1025.

Laugsch, M., et al., Modeling the pathological long-range regulatory effects of human structural variation with patient-specific hiPSCs. Cell Stem Cell, 2019. 24(5): p. 736-752. e12.

Kraft, K., et al., Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nature cell biology, 2019. 21(3): p. 305-310.

Despang, A., et al., Functional dissection of the Sox9–Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nature genetics, 2019. 51(8): p. 1263-1271.

Williamson, I., et al., Developmentally regulated Shh expression is robust to TAD perturbations. Development, 2019. 146(19).

Rodríguez-Carballo, E., et al., Impact of genome architecture on the functional activation and repression of Hox regulatory landscapes. BMC biology, 2019. 17(1): p. 1-18.

Ghavi-Helm, Y., et al., Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nature genetics, 2019. 51(8): p. 1272-1282.

Rao, S.S., et al., Cohesin loss eliminates all loop domains. Cell, 2017. 171(2): p. 305-320. e24.

Gibcus, J.H., et al., A pathway for mitotic chromosome formation. Science, 2018. 359(6376).

Wutz, G., et al., ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL. Elife, 2020. 9: p. e52091.

Guerrero-Martínez, J.A., et al., TGFβ promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nature communications, 2020. 11(1): p. 1-20.

Zabidi, M.A., et al., Enhancer–core-promoter specificity separates developmental and housekeeping gene regulation. Nature, 2015. 518(7540): p. 556-559.

Arnold, C.D., et al., Genome-wide assessment of sequence-intrinsic enhancer responsiveness at single-base-pair resolution. Nature biotechnology, 2017. 35(2): p. 136-144.

Haberle, V., et al., Transcriptional cofactors display specificity for distinct types of core promoters. Nature, 2019. 570(7759): p. 122-126.

Yang, C., et al., Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene, 2007. 389(1): p. 52-65.

Monahan, K., A. Horta, and S. Lomvardas, LHX2-and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature, 2019. 565(7740): p. 448-453.

Panigrahi, A.K., et al., SRC-3 coactivator governs dynamic estrogen-induced chromatin looping interactions during transcription. Molecular cell, 2018. 70(4): p. 679-694. e7.

Allen, B.L. and D.J. Taatjes, The Mediator complex: a central integrator of transcription. Nature reviews Molecular cell biology, 2015. 16(3): p. 155-166.

Zhu, F., et al., The interaction landscape between transcription factors and the nucleosome. Nature, 2018. 562(7725): p. 76-81.

Iwafuchi-Doi, M., et al., The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Molecular cell, 2016. 62(1): p. 79-91.

Liang, H.-L., et al., The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature, 2008. 456(7220): p. 400-403.

Jacobs, J., et al., The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes. Nature genetics, 2018. 50(7): p. 1011-1020.

Michael, A.K., et al., Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science, 2020. 368(6498): p. 1460-1465.

Dodonova, S.O., et al., Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function. Nature, 2020. 580(7805): p. 669-672.

Mivelaz, M., et al., Chromatin fiber invasion and nucleosome displacement by the Rap1 transcription factor. Molecular cell, 2020. 77(3): p. 488-500. e9.

Garcia, M.F., et al., Structural features of transcription factors associating with nucleosome binding. Molecular cell, 2019. 75(5): p. 921-932. e6.

Brodsky, S., et al., Intrinsically disordered regions direct transcription factor in vivo binding specificity. Molecular cell, 2020. 79(3): p. 459-471. e4.

Kvon, E.Z., et al., HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signature. Genes & development, 2012. 26(9): p. 908-913.

Reiter, F., S. Wienerroither, and A. Stark, Combinatorial function of transcription factors and cofactors. Current opinion in genetics & development, 2017. 43: p. 73-81.

Bardet, A.F., et al., A computational pipeline for comparative ChIP-seq analyses. Nature protocols, 2012. 7(1): p. 45-61.

Heinz, S., et al., Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Molecular cell, 2010. 38(4): p. 576-589.

Deplancke, B., D. Alpern, and V. Gardeux, The genetics of transcription factor DNA binding variation. Cell, 2016. 166(3): p. 538-554.

Stergachis, A.B., et al., Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science, 2020. 368(6498): p. 1449-1454.

Soenmezer, C., et al., Single molecule occupancy patterns of transcription factors reveal determinants of cooperative binding in vivo. bioRxiv, 2020.

Abdulhay, N.J., et al., Massively multiplex single-molecule oligonucleosome footprinting. Elife, 2020. 9: p. e59404.

Charest, J., et al., Combinatorial action of temporally segregated transcription factors. Developmental cell, 2020. 55(4): p. 483-499. e7.

Clarke, J. and R.V. Pappu, Editorial overview: Protein folding and binding, complexity comes of age. Current opinion in structural biology, 2017. 42: p. v-vii.

Banani, S.F., et al., Biomolecular condensates: organizers of cellular biochemistry. Nature reviews Molecular cell biology, 2017. 18(5): p. 285-298.

Larson, A.G., et al., Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature, 2017. 547(7662): p. 236-240.

Strom, A.R., et al., Phase separation drives heterochromatin domain formation. Nature, 2017. 547(7662): p. 241-245.

Klosin, A. and A.A. Hyman, A liquid reservoir for silent chromatin. Nature, 2017. 547(7662): p. 168-169.

Erdel, F., et al., Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid-liquid phase separation. Molecular cell, 2020. 78(2): p. 236-249. e7.

Cabianca, D.S., et al., Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei. Nature, 2019. 569(7758): p. 734-739.

Li, C.H., et al., MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature, 2020. 586(7829): p. 440-444.

Wang, L., et al., Rett syndrome-causing mutations compromise MeCP2-mediated liquid–liquid phase separation of chromatin. Cell research, 2020. 30(5): p. 393-407.

Chong, S., et al., Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science, 2018. 361(6400).

McSwiggen, D.T., et al., Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. Elife, 2019. 8: p. e47098.

McSwiggen, D.T., et al., Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes & development, 2019. 33(23-24): p. 1619-1634.

Mir, M., et al., Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. Elife, 2018. 7: p. e40497.

Quintero-Cadena, P., T.L. Lenstra, and P.W. Sternberg, RNA Pol II length and disorder enable cooperative scaling of transcriptional bursting. Molecular Cell, 2020. 79(2): p. 207-220. e8.

Gibson, B.A., et al., Organization of chromatin by intrinsic and regulated phase separation. Cell, 2019. 179(2): p. 470-484. e21.

Gallego, L.D., et al., Phase separation directs ubiquitination of gene-body nucleosomes. Nature, 2020. 579(7800): p. 592-597.

Boehning, M., et al., RNA polymerase II clustering through carboxy-terminal domain phase separation. Nature structural & molecular biology, 2018. 25(9): p. 833-840.

Sabari, B.R., et al., Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018. 361(6400).

Boija, A., et al., Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 2018. 175(7): p. 1842-1855. e16.

Gemayel, R., et al., Variable glutamine-rich repeats modulate transcription factor activity. Molecular cell, 2015. 59(4): p. 615-627.

Basu, S., et al., Unblending of transcriptional condensates in human repeat expansion disease. Cell, 2020. 181(5): p. 1062-1079. e30.

Zamudio, A.V., et al., Mediator condensates localize signaling factors to key cell identity genes. Molecular cell, 2019. 76(5): p. 753-766. e6.

Lu, Y., et al., Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nature cell biology, 2020. 22(4): p. 453-464.

Klein, I., et al., Partitioning of cancer therapeutics in nuclear condensates, 2021, Wolters Kluwer Health.

Haberle, V. and A. Stark, Eukaryotic core promoters and the functional basis of transcription initiation. Nature reviews Molecular cell biology, 2018. 19(10): p. 621-637.

Li, J., et al., Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells. Cell, 2019. 178(2): p. 491-506. e28.

Su, J.-H., et al., Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell, 2020. 182(6): p. 1641-1659. e26.

Li, J., et al., Single-gene imaging links genome topology, promoter–enhancer communication and transcription control. Nature structural & molecular biology, 2020. 27(11): p. 1032-1040.



How to Cite

Khan, S., & khan, M. U. . (2021). Review on Gene regulation: DNA-protein and protein-protein interactions and their regulatory elements. Journal of Chemistry and Nutritional Biochemistry, 2(2), 35–45.