Common Fixed Point Theorems In Anti Fuzzy Metric Spaces
Keywords:
Weakly commuting of type (J_F),, R-weakly commuting of type (J_F),, Generalized metric space, Anti fuzzy metric spaceAbstract
This article introduces the innovative concept of anti-fuzzy metric spaces and utilizes the property (E.A.) and Common limit range property of $\mathfrak{Q}$, we demonstrate the existence and uniqueness of a common fixed point in symmetric anti fuzzy metric spaces in this study. We discuss some novel ideas for a few mappings named R-weakly commuting of type $(\mathfrak{\mathfrak{J_P}})$ and weakly commuting of type $(\mathfrak{\mathfrak{J_P}})$ on an anti fuzzy metric space.
Downloads
References
M. Aamir and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), 181 - 188.
R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 35(1990), 121-124.
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395 - 399.
A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst. 90 (1997), 365 - 368.
O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Cybernetica 11 (1975),326 - 334.
S. Manro, S. S. Bhatia and S. Kumar, Common fixed point theorems in fuzzy metric spaces, Annals of Fuzzy Mathematics and Informatics, 3(1) (2012), 151 - 158.
Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289 - 297.
Z. Mustafa, H. Aydi and E. Karapinar, On common fixed points G-metric spaces using (E.A.) property, Computer and mathematics with applications 64 (2012), 1944 - 1956.
N. Palaniappan and R. Muthuraj, Anti fuzzy group and lower level subgroups, Antarctica J. Math., 1(1) (2004), 71 - 76.
S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (46) (1982), 149 - 153.
G. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. 2 (2010), 673 - 678.
Thangaraj Beaula and Beulah Mariya, Some aspects on 2- fuzzy 2- anti-Normed Linear space, Global Journal of Pure and Applied Mathematics13(2) (2017), 324 - 332.
Thangaraj Beaula and Beulah Mariya, Some Aspects on 2-Fuzzy 2-Anti Metric Space, International Journal of Mathematics Trends and Technology, 63( 2), ( 2018),151 – 156.
L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), 338 - 353.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Jeyaraman Mathuraiveeran, R. Pandiselvi Selvi, D. Poovaragavan
This work is licensed under a Creative Commons Attribution 4.0 International License.