Common Fixed Point Theorems In Anti Fuzzy Metric Spaces

https://doi.org/10.48185/jmam.v4i1.664

Authors

  • Jeyaraman Mathuraiveeran Raja Doraisingam Government Arts College, Sivagangai
  • R. Pandiselvi Selvi Department of Mathematics, The Madura College, Madurai
  • D. Poovaragavan

Keywords:

Weakly commuting of type (J_F),, R-weakly commuting of type (J_F),, Generalized metric space, Anti fuzzy metric space

Abstract

This article introduces the innovative concept of anti-fuzzy metric spaces and utilizes the property (E.A.) and Common limit range property of $\mathfrak{Q}$, we demonstrate the existence and uniqueness of a common fixed point in symmetric anti fuzzy metric spaces in this study. We discuss some novel ideas for a few mappings named R-weakly commuting of type $(\mathfrak{\mathfrak{J_P}})$ and weakly commuting of type $(\mathfrak{\mathfrak{J_P}})$ on an anti fuzzy metric space.

Downloads

Download data is not yet available.

References

M. Aamir and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), 181 - 188.

R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 35(1990), 121-124.

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395 - 399.

A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst. 90 (1997), 365 - 368.

O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Cybernetica 11 (1975),326 - 334.

S. Manro, S. S. Bhatia and S. Kumar, Common fixed point theorems in fuzzy metric spaces, Annals of Fuzzy Mathematics and Informatics, 3(1) (2012), 151 - 158.

Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289 - 297.

Z. Mustafa, H. Aydi and E. Karapinar, On common fixed points G-metric spaces using (E.A.) property, Computer and mathematics with applications 64 (2012), 1944 - 1956.

N. Palaniappan and R. Muthuraj, Anti fuzzy group and lower level subgroups, Antarctica J. Math., 1(1) (2004), 71 - 76.

S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (46) (1982), 149 - 153.

G. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. 2 (2010), 673 - 678.

Thangaraj Beaula and Beulah Mariya, Some aspects on 2- fuzzy 2- anti-Normed Linear space, Global Journal of Pure and Applied Mathematics13(2) (2017), 324 - 332.

Thangaraj Beaula and Beulah Mariya, Some Aspects on 2-Fuzzy 2-Anti Metric Space, International Journal of Mathematics Trends and Technology, 63( 2), ( 2018),151 – 156.

L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), 338 - 353.

Published

2023-09-07

How to Cite

Mathuraiveeran, J., Selvi, R. P., & Poovaragavan, D. . (2023). Common Fixed Point Theorems In Anti Fuzzy Metric Spaces . Journal of Mathematical Analysis and Modeling, 4(1), 106–114. https://doi.org/10.48185/jmam.v4i1.664

Issue

Section

Articles