Statistical approximation for functions of two variables by Bernstein-Chlodowsky Polynomials on a triangular domain
Keywords:
Bernstein-Chlodowsky polynomials, Positive linear operators, Statistical convergence, Ideal convergence, Korovkin approximation theoremAbstract
Statistical approximation of continuous functions of two variables by means of Bernstein-Chlodowsky polynomials on a triangular domain is studied. Further, weighted approximation of continuous functions of two variables on a triangular domain is investigated in statistical sense. Finally, we study the approximation results in terms of ideal convergence.
Downloads
References
bibitem{altomare} F. Altomare and M. Campiti, textit{Korovkin-type approximation theory and its
applications}, Walter de Gruyter, Berlin-New York, 1994.
bibitem{Cakalli} H. Cakalli and M. K. Khan, textit{Summability in topological
spaces}. Appl. Math. Lett., 24 (3) (2011), 348-352, URL: https://www.sciencedirect.com/science/article/pii/S089396591000368X
bibitem{duman1} O. Duman, C. Orhan, textit{$mu$-statistically convergent function sequences}, Czechoslov. Math. J., 54 (129)(2) (2004), 413-422, URL: https://dml.cz/handle/10338.dmlcz/127899
bibitem{fast} H. Fast, textit{Sur la convergence Statistique}, Colloq. Math., 2(1951), 241-244.
bibitem{Fridy} J.A.Fridy, textit{On statistical convergence}, Analysis 5 (4) (1985)
, 301-313,DOI: https://doi.org/10.1524/anly.1985.5.4.301
bibitem{FridyOrhan} J. A. Fridy, C. Orhan textit{Statistical limit superior and limit inferior}, Proc. Am. Math. Soc., 125 (12) (1997), 3625-3631, URL: https://www.ams.org/journals/proc/1997-125-12/S0002-9939-97-04000-8/S0002-9939-97-04000-8.pdf
bibitem{Gadjiev} A. D. Gadjiev, R.O. Efendiev and E. Ibikli, textit{Generalized Bernstein-Chlodowsky
polynomials}, Rocky Mountain J. Math., 28 (4)(1998), DOI:10.1216/rmjm/1181071716.
bibitem{Gadjieva} E. A. Gadjieva and E. Ibikli, textit{On generalization of Bernstein-Chlodowsky
polynomials}, Hacettepe Bull. Natur. Sci. Engrg., 24 (1995), 31-40.
bibitem{Gezer} F. Gezer, S. Karakuc{s}, textit{$I$ and $I^{*}$-convergent function sequences}, Mathematical Communications, 10 (2005),
-80, URL: https://hrcak.srce.hr/file/1336
bibitem{gokhan1} A. G$ddot{o}$khan, M. G$ddot{u}$ng$ddot{o}$r, textit{On pointwise statistical convergence}, Indian J. Pure Appl. Math., 33(9)(2002), 1379-1384.
bibitem{gokhan2} M. G$ddot{u}$ng$ddot{o}$r, A. G$ddot{o}$khan, textit{ On uniform statistical convergence}, Int. J. Pure Appl. Math., 19(1)(2005), 17-24.
bibitem{Ibikli} E. Ibikli, textit{On approximation for functions of two variables on a triangular domain}, Rocky Mountain J. Math., 35(5)(2005)
DOI: 10.1216/rmjm/1181069649
bibitem{kos} P. Kostyrko, T. v{S}al'{a}t and W. Wilczy'{n}ski, {it $mathcal{I}$%
-convergence}, Real Anal. Exchange, textbf{26} (2) (2000/2001) 669-685.
bibitem{kos2} P. Kostyrko, M. Ma$check{c}$aj, T. v{S}al'{a}t and M. Sleziak, {it $mathcal{I}$%
-convergence and extremal $mathcal{I}$-limit points}, Math. Slovaca, 55 (4) (2005) 443-464.
bibitem{Maio} G. Di. Maio, Lj. D. R. Kov{c}inac, textit{Statistical convergence in
topology}, Topology Appl., 156, (2008), 28-45,DOI:10.1016/j.topol.2008.01.015
bibitem{Maddox} I. J. Maddox, textit{Statistical convergence in a locally convex
spaces}, Math. Proc. Cambridge Philos. Soc., 104(1)(1988),
-145, https://doi.org/10.1017/S0305004100065312
bibitem{Miller} H. I. Miller, textit{A measure theoretical subsequence
characterization of statistical convergence}. Trans. Amer.
Math. Soc., 347 (5) (1995), 1811-1819, DOI:10.1090/S0002-9947-1995-1260176-6
bibitem{Prullage} D. L. Prullage, textit{Summability in topological groups}, Math. Z.,
(1967), 259-279,DOI: 10.1007/bf01123653
bibitem{Salat} T. v{S}al'at, textit{On statistical convergence of real numbers}, Math.
Slovaca, 30(1980), 139-150.
bibitem{Schoenberg} I. J. Schoenberg, textit{The integrability of certain functions and
related summability methods}, Amer. Math. Monthly 66
(1959) 361-375.
bibitem{Zigmund} A. Zigmund, textit{ cyr Trigonometricheskie ryady. Tomy I, II.
(Russian) [Trigonometric series] Izdat}. “Mir”, Moscow
Vol. I: 615 pp.; Vol. II: 537 pp. MR0178296.
Published
How to Cite
Issue
Section
Copyright (c) 1970 MR. ABHOY DE, DR. SUDIPTA DUTTA, DR. RIMA GHOSH

This work is licensed under a Creative Commons Attribution 4.0 International License.