Fixed Point Results in Archimedean Type Neutrosophic b-Metric Spaces

https://doi.org/10.48185/jmam.v5i3.1201

Authors

  • V.B. SHAKILA Research Scholar, PG and Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai, Affiliated to Alagappa University, Karaikudi, India. Department of Mathematics, Sourashtra College, Madurai, Tamilnadu, India
  • Jeyaraman Maduraiveeran Raja Doraisingam Government Arts College, Sivagangai
  • S. ISWARIYA P.G. and Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai. Affiliated to Alagappa University, Karaikudi, Tamilnadu, India

Keywords:

b-metric space;, Neutrosophic b metric spaces;, common fixed point

Abstract

This paper defines Archimedean, Caristi-Krirk balls, and Neutrosophic b metric space (Nb-MS). Using
the Archimedean idea and complete Nb-MS, we have shown the existence of a shared fixed point using
two self-mappings and an upper semicontinuous function. We have demonstrated the existence of a fixed point by employing a k-continuous self-map and an upper semi-continuous function in conjunction with the Archimedean notion and complete Nb-MS. Furthermore, we have proven the completeness of the space by using Archimedean, Nb-MS, and a k-continuous self-map.
MSC 2010: 47H10.

Downloads

Download data is not yet available.

References

K. T. Atannassov, Intuitionistic fuzzy sets, Fuzzy Sets System, 20 : 87-96, 1986.

I. A. Bakhtin, The contraction principle in quasimetric spaes, Funct. Anal., 30 : 26-37, 1989.

S. Czerwik, Contraction mappings in b metric spaces, Acta Math. Inform. Univ. Ostrav., 1(1) : 5-11, 1993.

P. Debnath, Set-valued Meir-Keeler, Geraghty and Edelstein type fixed point results in b-metric spaces, Rend. Circ. Mat. Palermo, Series 2, , 70(3) : 1389-1398,2021.

R. A. Espin-Andrade, L. Cruz-Reyes, C. Llorente-Peralta, E. Gonzalez-Caballero, W. Pedrycz, and S. Ruiz, Archimedean compensatory fuzzy logic as a pluralist contextual; theory useful for knowledge discovery, Int. J. Fuzzy Syst., 24(1) : 474-494, 2022.

R. A. Espin-Andrade, E. Gonzalez, W. Pedrycz and E. R. Fernaindez Gonzailez, Archimedeancompensatory fuzzy logic systems, Int. J. Comput. Intell. Syst., 8(2) : 54-62, 2015.

A. George and P. Veeramani, On some result in fuzzy metric spaces, Fuzzy Sets Syst., 64 : 359-399,1994.

S. Helipern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83(2) : 566-569, 1981.

O. Kaleva and S. Seikkala, A Banach contraction theorem in fuzzy metric space, Fuzzy Sets Syst., 12 : 215-229, 1984.

I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 : 326-334, 1975.

D. Rakic, A. Mukheimer, T. Dosenovic, Z. A. Mitrovic and S. Radenovic, On some new fixed point results in fuzzy b metric spaces, J. Inequal. Appl., 1 : 1-14, 2020.

V. B. Shakila, M. Jeyaraman and M. Rathivel, Some Fixed Point Results in Neutrosophic b Metric Spaces, Ratio Mathematica, Volume 49, 2023.

V. B. Shakila, M. Jeyaraman, Fixed Point Theorems of Contractive Mappings in Neutrosophic b Metric Spaces, Journal of Algebraic Statistics, 13(3) : 1330-1342, 2022.

T. Suzuki, Basic inequality on a b-metric space and its applications, J. Inequal. Appl., 1 : 256, 2017.

L. A. Zadeh, Fuzzy sets. Inform. Cont., 8 : 338-353, 1965

Published

2024-12-22

How to Cite

SHAKILA, V. ., Maduraiveeran, J., & ISWARIYA, S. . (2024). Fixed Point Results in Archimedean Type Neutrosophic b-Metric Spaces. Journal of Mathematical Analysis and Modeling, 5(3), 50–60. https://doi.org/10.48185/jmam.v5i3.1201

Issue

Section

Articles