Modeling the Transmission Dynamics of Maize Foliar Disease in Maize Plants
Modeling Maize Foliar Disease Dynamics in Maize Plants
Keywords:
Maize Foliar Disease, Maize plants, Transmission dynamics, Mathematical modellingAbstract
Maize Foliar Disease (MFD) is a significant issue affecting maize crop production globally, leading to substantial losses in both yield and quality. This study formulates and analyzes a mathematical model to understand MFD transmission dynamics in maize plants. We confirm that the model's solutions remain positive for all time $t > 0$. Utilizing the next generation matrix approach, we determine the basic reproduction number ($\mathcal R_0$) and examine the stability of the disease-free equilibrium (DFE). Our findings indicate that the DFE is locally asymptotically stable when $\mathcal R_0$are the most influential parameters affecting $\mathcal R_0$. This implies that MFD control efforts should focus on reducing these rates. Effective strategies include implementing disease-resistant maize varieties and improving crop management practices to lower infection rates. Numerical simulations using MATLAB show that reducing these key parameters can effectively control MFD spread, providing insights into optimal intervention strategies. This study underscores the importance of targeted agricultural practices to mitigate MFD and enhance maize production.
Downloads
References
bibitem{kaul2019overview}
Kaul, J., Jain, K., & Olakh, D. (2019). An overview on role of yellow maize in food, feed and nutrition security. textit{International Journal of Current Microbiology and Applied Sciences}, 8(02), 3037-3048.
bibitem{nuss2010maize}
Nuss, E. T., & Tanumihardjo, S. A. (2010). Maize: a paramount staple crop in the context of global nutrition. textit{Comprehensive Reviews in Food Science and Food Safety}, 9(4), 417-436. Wiley Online Library.
bibitem{edmeades2017tropical}
Edmeades, G. O., Trevisan, W., Prasanna, B. M., & Campos, H. (2017). Tropical maize (Zea mays L.). textit{Genetic Improvement of Tropical Crops}, 57-109. Springer.
bibitem{wise2020failing}
Wise, T. A. (2020). Failing Africa's farmers: An impact assessment of the Alliance for a Green Revolution in Africa. textit{axelkra.us}. Tufts University Medford, MA.
bibitem{melese2022mathematical}
Melese, A. S., Makinde, O. D., & Obsu, L. L. (2022). Mathematical modelling and analysis of coffee berry disease dynamics on a coffee farm. textit{Mathematical Biosciences and Engineering}, 19(7), 7349-7373.
bibitem{araujo2020status}
de Araújo, A. G., Sims, B., Desbiolles, J., Bolonhezi, D., Haque, E., Jin, H., Fayad, J. A., Kienzle, J., do Prado Wildner, L., & Hongwen, L. (2020). The status of mechanization in Conservation Agriculture systems. textit{Advances in Conservation Agriculture}, 427-496. Burleigh Dodds Science Publishing.
bibitem{utonga2024towards}
Utonga, D., & Kamwela, L. J. (2024). Towards Sustainable Maize Farming in Tanzania: Understanding Yield Predictors among Smallholder Farmers. textit{Contemporary Research in Business, Management and Economics}. BP International.
bibitem{erenstein2022global}
Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. (2022). Global maize production, consumption and trade: Trends and R&D implications. textit{Food Security}, 14(5), 1295-1319. Springer.
bibitem{liliane2020factors}
Liliane, T. N., & Mutengwa, C. S. (2020). Factors affecting yield of crops. textit{Agronomy-climate change & food security}, 9. IntechOpen London, UK.
bibitem{gadag2021resistance}
Gadag, R. N., Bhat, J. S., Mukri, G., Gogoi, R., Suby, S. B., Das, A. K., Yadav, S., Yadava, P., Nithyashree, M. L., & Naidu, G. K. (2021). Resistance to biotic stress: theory and applications in maize breeding. textit{Genomic Designing for Biotic Stress Resistant Cereal Crops}, 129-175. Springer.
bibitem{nazarov2020infectious}
Nazarov, P. A., Baleev, D. N., Ivanova, M. I., Sokolova, L. M., & Karakozova, M. V. (2020). Infectious plant diseases: Etiology, current status, problems and prospects in plant protection. textit{Acta Naturae}, 12(3), 46.
bibitem{singh2016diseases}
Singh, R. P., Singh, M., & Singh, D. (2016). Diseases and Management of Maize. textit{Crop Diseases and Their Management}, 19-42. Apple Academic Press.
bibitem{cardwell1997systems}
Cardwell, K. F., Schulthess, F., Ndemah, R., & Ngoko, Z. (1997). A systems approach to assess crop health and maize yield losses due to pests and diseases in Cameroon. textit{Agriculture, Ecosystems & Environment}, 65(1), 33-47. Elsevier.
bibitem{suleiman2015current}
Suleiman, R. A., & Kurt, R. A. (2015). Current maize production, postharvest losses and the risk of mycotoxins contamination in Tanzania. textit{2015 ASABE Annual International Meeting}, 1. American Society of Agricultural and Biological Engineers.
bibitem{kaurscreening}
Kaur, H. Screening techniques for disease resistance in maize. textit{Biotic and Abiotic Stress Tolerance in Plants under Changing Climatic Conditions}.
bibitem{carlile2012control}
Carlile, W. R., & Coules, A. (2012). Control of crop diseases. Cambridge University Press.
bibitem{kranz2012epidemics}
Kranz, J. (2012). Epidemics of plant diseases: mathematical analysis and modeling. Springer Science & Business Media.
bibitem{collins2018optimal}
Collins, O. C., & Duffy, K. J. (2018). Optimal control of foliar disease dynamics for multiple maize varieties. textit{Acta Agriculturae Scandinavica, Section B—Soil & Plant Science}, 68(5), 412-423. Taylor & Francis.
bibitem{kumar2022novel}
Kumar, A., Kumar, S., Alzaid, S. S., & Alkahtani, B. S. T. (2022). A novel mechanism to simulate fractional order maize foliar disease dynamical model. textit{Results in Physics}, 41, 105863. Elsevier.
bibitem{putri2019maize}
Putri, K. M. (2019). A maize foliar disease mathematical model with standard incidence rate. textit{IOP Conference Series: Materials Science and Engineering}, 546(5), 052085. IOP Publishing.
bibitem{kapange2019modeling}
Kapange, F., Irunde, J. I., & Kuznetsov, D. (2019). Modeling transmission dynamics of Northern Corn Leaf Blight disease with seasonal weather variations. textit{Journal of Mathematics and Informatics}. Journal of Mathematics and Informatics.
bibitem{alemneh2019ecoepidemiological}
Alemneh, H. T., Makinde, O. D., & Mwangi Theuri, D. (2019). Ecoepidemiological model and analysis of MSV disease transmission dynamics in maize plant. textit{International Journal of Mathematics and Mathematical Sciences}, 2019. Hindawi.
bibitem{collins2016optimal}
Collins, O. C., & Duffy, K. J. (2016). Optimal control of maize foliar diseases using the plants population dynamics. textit{Acta Agriculturae Scandinavica, Section B—Soil & Plant Science}, 66(1), 20-26. Taylor & Francis.
bibitem{chitnis2008determining}
Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. textit{Bulletin of Mathematical Biology}, 70, 1272-1296. Springer.
bibitem{nyerere2024global}
Nyerere, N., Mpeshe, S. C., Ainea, N., Ayoade, A. A., & Mgandu, F. A. (2024). Global sensitivity analysis and optimal control of Typhoid fever transmission dynamics. textit{Mathematical Modelling and Analysis}, 29(1), 141-160.
bibitem{mgandu2024mathematical}
Mgandu, F. A., Mirau, S., Nyerere, N., Mbega, E., & Chirove, F. (2024). Mathematical model to assess the impacts of aflatoxin contamination in crops, livestock and humans. textit{Scientific African}, 23, e01980. Elsevier.
bibitem{korobeinikov2002lyapunov}
Korobeinikov, A., & Wake, G. C. (2002). Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. textit{Applied Mathematics Letters}, 15(8), 955-960. Elsevier.
bibitem{korobeinikov2004lyapunov}
Korobeinikov, A. (2004). Lyapunov functions and global properties for SEIR and SEIS epidemic models. textit{Mathematical Medicine and Biology: A Journal of the IMA}, 21(2), 75-83. OUP.
bibitem{diekmann1990definition}
Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. textit{Journal of Mathematical Biology}, 28, 365-382. Springer.
bibitem{diekmann2010construction}
Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. textit{Journal of the Royal Society Interface}, 7(47), 873-885. The Royal Society.
bibitem{delamater2019complexity}
Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T., & Jacobsen, K. H. (2019). Complexity of the basic reproduction number (R0). textit{Emerging Infectious Diseases}, 25(1), 1. Centers for Disease Control and Prevention.
bibitem{castillo2002mathematical}
Castillo-Chavez, C., Blower, S., van den Driessche, P., Kirschner, D., & Yakubu, A. (2002). Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory. Springer Science & Business Media.
bibitem{la1976stability}
La Salle, J. P. (1976). The stability of dynamical systems. SIAM.
bibitem{abdo2022vaccination}
Abdo, M. S., Kamarany, M. A. A., Suhail, K. A., & Majam, A. S. (2022). Vaccination-based measles outbreak model with fractional dynamics. textit{Abhath Journal of Basic and Applied Sciences}, 1(2), 6-10.
bibitem{tewa2009lyapunov}
Tewa, J. J., Dimi, J. L., & Bowong, S. (2009). Lyapunov functions for a dengue disease transmission model. textit{Chaos, Solitons & Fractals}, 39(2), 936-941. Elsevier.
bibitem{mgandu2023optimal}
Mgandu, F. A., Mirau, S., Nyerere, N., & Chirove, F. (2023). Optimal control and cost effectiveness analysis of contamination associated with aflatoxins in maize kernels, livestock and humans. textit{Results in Control and Optimization}, 13, 100313. Elsevier.
bibitem{vargas2009constructions}
Vargas-De-León, C. (2009). Constructions of Lyapunov functions for classic SIS, SIR and SIRS epidemic models with variable population size. textit{Foro-Red-Mat: Revista Electrónica de Contenido Matemático}, 26(5), 1-12.
bibitem{aloyce2017mathematical}
Aloyce, W., & Kuznetsov, D. (2017). A mathematical model for the MLND dynamics and sensitivity analysis in a maize population. textit{Asian Journal of Mathematics and Applications}.
bibitem{sk2023dynamics}
Sk, N., Pal, S., Majumdar, P., & Mondal, B. (2023). Dynamics of an eco-epidemiological system: Predators get infected in two paths. textit{Journal of Computational Science}, 69, 102023. Elsevier.
bibitem{zhang2024effect}
Zhang, C. (2024). The effect of the fear factor on the dynamics of an eco-epidemiological system with standard incidence rate. textit{Infectious Disease Modelling}, 9, 294-308. Elsevier.
bibitem{abdo2020existence}
Abdo, M. S., Abdeljawad, T., Ali, S. M., Shah, K., & Jarad, F. (2020). Existence of positive solutions for weighted fractional order differential equations. textit{Chaos, Solitons & Fractals}, 141, 110341. Elsevier.
bibitem{abdo2020comprehensive}
Abdo, M. S., Shah, K., Wahash, H. A., & Panchal, S. K. (2020). On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. textit{Chaos, Solitons & Fractals}, 135, 109867. Elsevier.
bibitem{abdo2019fractional}
Abdo, M. S., & Panchal, S. K. (2019). Fractional integro-differential equations involving $psi$-Hilfer fractional derivative. textit{Adv. Appl. Math. Mech}, 11(2), 338--359.
bibitem{abdo2020modeling}
Abdo, M. S., Panchal, S. K., Shah, K., & Abdeljawad, T. (2020). Existence theory and numerical analysis of three species prey--predator model under Mittag-Leffler power law. textit{Advances in Difference Equations}, 2020, 1--16. Springer.
bibitem{seidu2024mathematical}
Seidu, B. (2024). Mathematical analysis of the role of host-to-host transmission of Maize Streak Virus Disease with Atangana-Baleanu derivative. textit{Arab Journal of Basic and Applied Sciences}, 31(1), 213--224. Taylor & Francis.
bibitem{holt1997epidemilogical}
Holt, J., Jeger, M. J., Thresh, J. M., & Otim-Nape, G. W. (1997). An epidemiological model incorporating vector population dynamics applied to African cassava mosaic virus disease. textit{Journal of Applied Ecology}, 793--806. JSTOR.
bibitem{de2020status}
de Ara{'u}ujo, A. G., Sims, B., Desbiolles, J., Bolonhezi, D., Haque, E., Jin, H., Fayad, J. A., Kienzle, J., do Prado Wildner, L., Hongwen, L., et al. (2020). The status of mechanization in Conservation Agriculture systems. In textit{Advances in conservation agriculture} (pp. 427-496). Burleigh Dodds Science Publishing.
bibitem{meng2010dynamics}
Meng, X., & Li, Z. (2010). The dynamics of plant disease models with continuous and impulsive cultural control strategies. textit{Journal of Theoretical Biology}, 266(1), 29--40. Elsevier.
bibitem{keno2018major}
Keno, T., Azmach, G., Gissa, D. W., Regasa, M. W., Tadesse, B., Wolde, L., Deressa, T., Abebe, B., Chibsa, T., & Mahabaleswara, S. L. (2018). Major biotic maize production stresses in Ethiopia and their management through host resistance. Academic Journals.
bibitem{hock1995studies}
Hock, J., Kranz, J., & Renfro, B. L. (1995). Studies on the epidemiology of the tar spot disease complex of maize in Mexico. textit{Plant Pathology}, 44(3), 490--502. Wiley Online Library.
bibitem{martin2009epidemiology}
Martin, D. P., & Shepherd, D. N. (2009). The epidemiology, economic impact and control of maize streak disease. textit{Food Security}, 1, 305--315. Springer.
bibitem{jeger1998model}
Jeger, M. J., Van Den Bosch, F., Madden, L. V., & Holt, J. (1998). A model for analysing plant-virus transmission characteristics and epidemic development. textit{Mathematical Medicine and Biology: A Journal of the IMA}, 15(1), 1--18. OUP.
bibitem{fajinmi2012incidence}
Fajinmi, A. A., Dokunmu, A. O., Akheituamen, D. O., & Onanuga, K. A. (2012). Incidence and infection rate of Maize streak virus disease by Cicadulina triangular on maize plants and its distribution from the lowest diseased leaf under tropical conditions. textit{Archives of Phytopathology and Plant Protection}, 45(13), 1591--1598. Taylor & Francis.
bibitem{anggriani2018mathematical}
Anggriani, N., Ndii, M. Z., Arumi, D., Istifadah, N., & Supriatna, A. K. (2018). Mathematical model for plant disease dynamics with curative and preventive treatments. textit{AIP Conference Proceedings}, 2043(1). AIP Publishing.
bibitem{ali2024effect}
Ali, H. M., Ameen, I. G., & Gaber, Y. A. (2024). The effect of curative and preventive optimal control measures on a fractional order plant disease model. textit{Mathematics and Computers in Simulation}. Elsevier.
bibitem{nisar2024review}
Nisar, K. S., Farman, M., Abdel-Aty, M., & Ravichandran, C. (2024). A review of fractional order epidemic models for life sciences problems: Past, present and future. textit{Alexandria Engineering Journal}, 95, 283--305. Elsevier.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Fadhili Mrope, Odeli Kigodi

This work is licensed under a Creative Commons Attribution 4.0 International License.