Some classes of open sets in topological spaces by using ω—openness property

SULIMAN DAWOOD

Department of Mathematics, Faculty of Education, Hodeidah University, Hodeidah, Yemen

Abstract

By using ω—open sets in this work, we introduce and study some new classes of open sets in topological spaces that are finer than those of open sets. The continuity via these classes will be introduced and studied.

Keywords: Open set, Generalized Open set, Decomposition of continuity.

2010 MSC: 54A05, 54A10, 54C10.

1. Introduction

Many authors in general topology introduced and studied some classes of weak or strong forms of open sets in topological spaces. Levine, [4] 1970 introduced the notion of generalized open sets, a weak form of open sets. In 1982 Hdeib [2] introduced the notion of omega—open sets as a weak form of open sets. The authors [3] introduced the weak form for an open set, which is called a β—open set. In 2005, Al-Zoubi [1] introduced the generalization property of ω—open sets to get a weak form of ω—open sets. Noiri and Noorani [5] introduced the notion of Θ(ω)—open set which is a weak form for a ω—open sets and a β—open sets.

In this paper, we introduce the concept of generalized Θ(ω)—open sets by utilizing the Θ(ω)—closure operator. Furthermore, the relationship with the other known sets will be studied. Next we introduce the notions of Θ(ω)—continuous, generalized Θ(ω)—continuous, Slightly and Contra Θ(ω)—Continuous functions.
2. Preliminaries

Theorem 2.1. [6] For a topological space (X, τ) and $A, B \subseteq X$, if B is an open set in X then $\text{Cl}(A) \cap B \subseteq \text{Cl}(A \cap B)$, where $\text{Cl}(A)$ is the closure of a set A.

Theorem 2.2. [6] For a topological space (X, τ),
1. $\text{Cl}(X - A) = X - \text{Int}(A)$ for all $A \subseteq X$,
2. $\text{Int}(X - A) = X - \text{Cl}(A)$ for all $A \subseteq X$,

where $\text{Int}(A)$ is the interior set of a set A.

Definition 2.3. [4] A subset A of a topological space (X, τ) is called generalized closed (simply g–closed) set, if $\text{Cl}(A) \subseteq \cup$ whenever $A \subseteq \cup$ and \cup is open subset of (X, τ). The complement of g–closed set is called generalized open (simply g–open) set.

Theorem 2.4. [4] Every closed set is a g–closed set.

Definition 2.5. A topological space (X, τ) is called:
1. $T_{1/2}$–space [4] if every g–closed set is closed set.
2. T_1–space [6] if for each disjoint point $x \neq y \in X$, there are two open sets G and H in X such that $x \in H$, $y \in G$, $x \notin G$ and $y \notin H$.

Theorem 2.6. [7] A topological space (X, τ) is $T_{1/2}$–space if and only if every singleton set is open or closed set.

Theorem 2.7. [6] A topological space (X, τ) is T_1–space if and only if every singleton set is closed set.

Definition 2.8. [2] A subset A of a space X is called ω–open set if for each $x \in A$, there is an open set U_x containing x such that $U_x - A$ is a countable set. The complement of a ω–open set is called ω–closed set. The set of all ω–closed sets in X denoted by $\omega C(X, \tau)$ and the set of all ω–open sets in X denoted by $\omega O(X, \tau)$.

Theorem 2.9. [2] Every open set is ω–open set.

Theorem 2.10. [2] For a topological space (X, τ), the pair $[X, \omega O(X, \tau)]$ forms a topological space.

For a topological space (X, τ) and $A \subseteq X$, the ω–closure of a set A is defined as the intersection of all ω–closed subsets of X containing A and is denoted by $\text{Cl}_{\omega}(A)$. The ω–interior set of A is defined as the union of all ω–open subsets of X contained in A and is denoted by $\text{Int}_{\omega}(A)$.

Definition 2.11. [1] A subset A of a space X is called generalized ω–closed set (simply $g\omega$–closed) set if $\text{Cl}_{\omega}(A) \subseteq \cup$ whenever $A \subseteq \cup$ and \cup is open set. The complement of generalized ω–closed set is called generalized ω–open set (simply $g\omega$–open) set.

Theorem 2.12. [1] Every g–closed set is a $g\omega$–closed set.
Definition 2.13. [5] A subset A of a topological space (X, τ) is called $\Theta(\omega)$—open set if $A \subseteq \text{Cl}(\text{Int}_\omega(\text{Cl}(A)))$. The complement of $\Theta(\omega)$—open set is called $\Theta(\omega)$—closed set. The set of all $\Theta(\omega)$—closed sets in X denoted by $\Theta(\omega)\text{C}(X, \tau)$ and the set of all $\Theta(\omega)$—open sets in X denoted by $\Theta(\omega)\text{O}(X, \tau)$.

Theorem 2.14. [5] The union of arbitrary of $\Theta(\omega)$—open sets is $\Theta(\omega)$—open set.

Theorem 2.15. [5] Every ω—open set is $\Theta(\omega)$—open set.

Definition 2.16. A function $f : (X, \tau) \rightarrow (Y, \rho)$ of a space (X, τ) into a space (Y, ρ) is called:

1. g—continuous function [4] if $f^{-1}(U)$ is a g—open set in X for every open set U in Y.
2. ω—continuous function [2] if for each $x \in X$ and for an open set G in Y containing $f(x)$, there is a ω—open set U in X containing x such that $f(U) \subseteq G$.
3. $g\omega$—continuous function [1] if $f^{-1}(U)$ is a $g\omega$—open set in X for every open set U in Y.

It is clear that Every continuous function is g—continuous function [4], every continuous function is ω—continuous function [2], every ω—continuous function is $g\omega$—continuous function [1] and every g—continuous function is $g\omega$—continuous function [1].

3. Generalized $\Theta(\omega)$—open sets

Definition 3.1. A subset A of a topological space (X, τ) is called $\Theta(\omega)$—open set if $A \subseteq \text{Cl}(\text{Int}_\omega(\text{Cl}(A)))$. The complement of $\Theta(\omega)$—open set is called $\Theta(\omega)$—closed set. The set of all $\Theta(\omega)$—closed sets in X denoted by $\Theta(\omega)\text{C}(X, \tau)$ and the set of all $\Theta(\omega)$—open sets in X denoted by $\Theta(\omega)\text{O}(X, \tau)$.

For a topological space (X, τ) and $A \subseteq X$, the $\Theta(\omega)$—closure set of A is defined as the intersection of all $\Theta(\omega)$—closed subsets of X containing A and is denoted by $\text{Cl}_{\Theta(\omega)}(A)$. The $\Theta(\omega)$—interior set of A is defined as the union of all $\Theta(\omega)$—open subsets of X contained in A and is denoted by $\text{Int}_{\Theta(\omega)}(A)$. From Theorem (2.14), $\text{Cl}_{\Theta(\omega)}(A)$ is a $\Theta(\omega)$—closed subsets of X and $\text{Int}_{\Theta(\omega)}(A)$ is $\Theta(\omega)$—open subsets of X.

Definition 3.2. A subset A of a topological space (X, τ) is called generalized $\Theta(\omega)$—closed (simply $G_{\Theta(\omega)}$—closed) set, if $\text{Cl}_{\Theta(\omega)}(A) \subseteq U$ whenever $A \subseteq U$ and U is open subset of (X, τ). The complement of $G_{\Theta(\omega)}$—closed set is called generalized $\Theta(\omega)$—open (simply $G_{\Theta(\omega)}$—open) set.

For a topological space (X, τ), the set of all $G_{\Theta(\omega)}$—closed sets in X denoted by $G_{\Theta(\omega)}\text{C}(X, \tau)$ and the set of all $G_{\Theta(\omega)}$—open sets in X denoted by $G_{\Theta(\omega)}\text{O}(X, \tau)$.

Example 3.3. For any topological space (X, τ), if X is countable then it’s clear that every subset of X is a both $G_{\Theta(\omega)}$—closed and $G_{\Theta(\omega)}$—open set. That is,

$$G_{\Theta(\omega)}\text{O}(X, \tau) = G_{\Theta(\omega)}\text{C}(X, \tau) = P(X),$$

where $P(X)$ is the power of X.
Example 3.4. Let \((\mathbb{R}, \tau_U)\) be the real usual topological space on the set of real numbers \(\mathbb{R}\). The rational set \(Q\) is a \(G_\Theta(\omega)\)-closed set, since the irrational set \(\mathbb{IR} - Q\) is a \(\Theta(\omega)\)-open set, that is, \(\text{Cl}_{\Theta(\omega)}(Q) = \emptyset\).

Theorem 3.5. Any a countable subset of a topological space \((X, \tau)\) is a \(G_\Theta(\omega)\)-closed set in \(X\).

Theorem 3.6. Every \(\Theta(\omega)\)-open set is \(G_\Theta(\omega)\)-open set.

Corollary 3.7. Every \(\Theta(\omega)\)-closed set is \(G_\Theta(\omega)\)-closed set.

The converse of the last theorem does not need to be true.

Example 3.8. In topological space \((\mathbb{R}, \tau)\), the set \(\mathbb{R} - \{2\}\) is \(G_\Theta(\omega)\)-closed set but it is not \(\Theta(\omega)\)-closed set, where \(\tau = \{\emptyset, \mathbb{R}, \mathbb{R} - \{2, 3\}\}\).

Theorem 3.9. Let \((X, \tau)\) be a topological space. If \((X, \tau)\) is a \(T_{1/2}\)–space then every \(G_\Theta(\omega)\)-closed set in \(X\) is \(\Theta(\omega)\)-closed set in \(X\).

Proof. Let \(A\) be a \(G_\Theta(\omega)\)-closed set in \(X\). Suppose that \(A\) is not \(\Theta(\omega)\)-closed set. Then there is at least \(x \in \text{Cl}_{\Theta(\omega)}(A)\) such that \(x \notin A\). Since \((X, \tau)\) is a \(T_{1/2}\)–space then by Theorem (2.6), \(\{x\}\) is an open or closed set in \(X\). If \(\{x\}\) is a closed set in \(X\) then \(X - \{x\}\) is open. Since \(x \notin A\) then \(A \subseteq X - \{x\}\). Since \(A\) is a \(G_\Theta(\omega)\)-closed set and \(X - \{x\}\) is an open subset of \(X\) containing \(A\), then \(\text{Cl}_{\Theta(\omega)}(A) \subseteq X - \{x\}\). Hence \(x \in X - \text{Cl}_{\Theta(\omega)}(A)\) and this a contradiction, since \(x \in \text{Cl}_{\Theta(\omega)}(A)\). If \(\{x\}\) is an open set then it is \(\Theta(\omega)\)-open set. Since \(x \in \text{Cl}_{\Theta(\omega)}(A)\) then we have \(\{x\} \cap A \neq \emptyset\). That is, \(x \in A\) and this a contradiction. Hence \(A\) is a \(\Theta(\omega)\)-closed set in \(X\).

Theorem 3.10. Every \(g\omega\)-closed set is \(G_\Theta(\omega)\)-closed set.

Proof. It is clear, since \(\text{Cl}_{\Theta(\omega)}(A) \subseteq \text{Cl}_\omega(A)\).

The converse of the above theorem does not need to be true.

Example 3.11. In topological space \((\mathbb{R}, \tau)\), where \(\tau = \{\emptyset, \mathbb{R}, \mathbb{IR} \cup \{2\}\}\) and \(\mathbb{IR}\) is a set of irrational numbers, the set of rational numbers \(Q\) is \(\Theta(\omega)\)-open set. That is, \(\mathbb{IR}\) is \(\Theta(\omega)\)-closed set and thus \(\text{Cl}_{\Theta(\omega)}(\mathbb{IR}) = \mathbb{IR}\). Hence \(\mathbb{IR}\) is a \(G_\Theta(\omega)\)-closed set. Since \(Q\) is not a \(\omega\)-open set, then \(\mathbb{IR}\) is not a \(\omega\)-closed set, that is, \(\text{Cl}_\omega(\mathbb{IR}) \neq \mathbb{IR}\). Note that \(\mathbb{IR} \subseteq \mathbb{IR} \cup \{2\}\) and \(\mathbb{IR} \cup \{2\}\) but \(\text{Cl}_\omega(\mathbb{IR}) \not\subseteq \mathbb{IR} \cup \{2\}\), note that for example, \(3 \in \text{Cl}_\omega(\mathbb{IR})\) and \(3 \not\in \mathbb{IR} \cup \{2\}\). That is, the set \(\mathbb{IR}\) is not \(g\omega\)-closed set.

A topological space \((X, \tau)\) is called anti-locally countable space [5] if each nonempty open set in \(X\) is an uncountable set.

Lemma 3.12. [5] Let \((X, \tau)\) be anti-locally countable space. Then
1. \(\text{Int}_\omega(A) = \text{Int}_\omega(A)\) for every \(\omega\)-closed set \(A\) in \(X\).
2. \(\text{Cl}_\omega(A) = \text{Cl}_\omega(A)\) for every \(\omega\)-open set \(A\) in \(X\).

Lemma 3.13. For a topological space \((X, \tau)\) and \(A \subseteq X\), the following hold:
1. \(\text{Int}_{\Theta(\omega)}(X - A) = X - \text{Cl}_{\Theta(\omega)}(A)\).
2. \(\text{Cl}_{\Theta(\omega)}(X-A) = X - \text{Int}_{\Theta(\omega)}(A) \).

Proof. Necessity: Let \(\Theta(\omega) \)-open set \(U \) such that \(x \in U \subseteq X - A \). Then \(X - U \) is a \(\Theta(\omega) \)-closed set containing \(A \) and \(x \notin X - U \). Hence \(x \notin \text{Cl}_{\Theta(\omega)}(A) \), that is, \(x \in X - \text{Cl}_{\Theta(\omega)}(A) \).

2. Similar for the part (1). \(\square \)

Definition 3.14. A subset \(A \) of a topological space \((X, \tau)\) is called \(S_\omega \)-open set if \(A \subseteq \text{Int}_{\omega}(\text{Cl}_\omega(A)) \). The complement of \(S_\omega \)-open set is called \(S_\omega \)-closed set. The set of all \(S_\omega \)-closed sets in \(X \) denoted by \(S_\omega C(X, \tau) \) and the set of all \(S_\omega \)-open sets in \(X \) denoted by \(S_\omega O(X, \tau) \).

Theorem 3.15. Let \((X, \tau)\) be anti-locally countable space and \(\Theta(\omega)O(X, \tau) = S_\omega O(X, \tau) \). Then

1. \(\text{Cl}(A) = \text{Cl}_\omega(A) = \text{Cl}_{\Theta(\omega)}(A) \) for every \(\omega \)-open set \(A \) in \(X \).
2. \(\text{Int}(A) = \text{Int}_\omega(A) = \text{Int}_{\Theta(\omega)}(A) \) for every \(\omega \)-closed set \(A \) in \(X \).

Proof. (1) Let \(A \) be a \(\omega \)-open set in \(X \). It is clear from Lemma (3.12) that \(\text{Cl}(A) = \text{Cl}_\omega(A) \) and it is clear that \(\text{Cl}_{\Theta(\omega)}(A) \subseteq \text{Cl}_\omega(A) \). Now, we need to prove that \(\text{Cl}_\omega(A) \subseteq \text{Cl}_{\Theta(\omega)}(A) \). Let \(x \notin \text{Cl}_{\Theta(\omega)}(A) \). Then there is a \(\Theta(\omega) \)-open set \(O \) in \(X \) such that \(O \cap A = \emptyset \). Since \(\Theta(\omega)O(X, \tau) = S_\omega O(X, \tau) \), then \(O \subseteq \text{Int}_\omega(\text{Cl}_\omega(O)) \). Hence \(\text{Int}_\omega(\text{Cl}_\omega(O)) \cap A \) is a \(\omega \)-open set containing \(x \) and

\[
\text{Int}_\omega(\text{Cl}_\omega(O)) \cap A = \text{Int}_\omega(\text{Cl}_\omega(O)) \cap \text{Int}_\omega(A) = \text{Int}_\omega(\text{Cl}_\omega(O)) \cap A \subseteq \text{Cl}_\omega(O) \cap A = \text{Cl}_\omega(\emptyset) = \emptyset.
\]

That is, \(x \notin \text{Cl}_\omega(A) \). Hence \(\text{Cl}_{\Theta(\omega)}(A) \subseteq \text{Cl}_\omega(A) \).

(2) Similar for the part (1), by Lemma (3.13) and Lemma (3.12). \(\square \)

Theorem 3.16. Let \((X, \tau)\) be anti-locally countable space and \(\Theta(\omega)O(X, \tau) = S_\omega O(X, \tau) \). Then \(X \) is \(T_1 \)-space if and only if every \(G_{\Theta(\omega)} \)-closed set is a \(\Theta(\omega) \)-closed set in \(X \).

Proof. Necessity: By Theorem (2.7), \(X \) is a \(T_{1/2} \)-space. Then, by Theorem (3.9), every \(G_{\Theta(\omega)} \)-closed set is a \(\Theta(\omega) \)-closed set in \(X \).

Sufficiency: Let \(x \in X \) be an arbitrary point in \(X \). By using Theorem (2.7), to prove that \(X \) is a \(T_1 \)-space, we will prove that \(\{x\} \) is a closed set in \(X \). Suppose that \(\{x\} \) is not closed set in \(X \). Then \(A = X - \{x\} \) is not open set. Then \(X \) is the only open set containing \(A \) and hence \(\text{Cl}_{\Theta(\omega)}(A) \subseteq X \), that is, \(A \) is a \(\Theta(\omega) \)-closed set in \(X \). Then, by assumption, \(A \) is a \(\Theta(\omega) \)-closed set. That is, \(\text{Cl}_{\Theta(\omega)}(A) = A \). Since \(X - \{x\} \) is a \(\omega \)-open set, then by Theorem (3.15)

\[
\text{Cl}(A) = \text{Cl}_\omega(A) = \text{Cl}_{\Theta(\omega)}(A) = A.
\]

That is, \(\{x\} \) is an open set, which contradicts the fact that \((X, \tau)\) is anti-locally countable space. Then \(X \) is \(T_1 \)-space. \(\square \)
Theorem 3.17. If \(A \) is a \(G_\Theta(\omega) \)-closed set in a topological space \((X, \tau)\) and \(B \) is a closed set in \(X \) then \(A \cap B \) is a \(G_\Theta(\omega) \)-closed set.

Proof. Let \(U \) be an open subset of \(X \) such that \(A \cap B \subseteq U \). Since \(B \) is a closed set in \(X \), then \(U \cup (X - B) \) is an open set in \(X \). Since \(A \) is a \(G_\Theta(\omega) \)-closed set in \(X \) and \(A \subseteq U \cup (X - B) \) then \(\text{Cl}_{\Theta(\omega)}(A) \subseteq U \cup (X - B) \). Hence

\[
\text{Cl}_{\Theta(\omega)}(A \cap B) \subseteq \text{Cl}_{\Theta(\omega)}(A) \cap \text{Cl}_{\Theta(\omega)}(B) \subseteq \text{Cl}_{\Theta(\omega)}(A) \cap \text{Cl}(B).
\]

Thus, \(A \cap B \) is a \(G_\Theta(\omega) \)-closed set. \(\square \)

Theorem 3.18. A subset \(A \) of a topological space \((X, \tau)\) is a \(G_\Theta(\omega) \)-open if and only if \(F \subseteq \text{Int}_{\Theta(\omega)}(A) \) whenever \(F \subseteq A \) and \(F \) is closed subset of \((X, \tau)\).

Proof. Let \(A \) be a \(G_\Theta(\omega) \)-open subset of \(X \) and \(F \) be a closed subset of \(X \) such that \(F \subseteq A \). Then \(X - A \) is a \(G_\Theta(\omega) \)-closed set in \(X \), \(X - A \subseteq X - F \) and \(X - F \) is an open subset of \(X \). Hence Lemma (3.13), \(X - \text{Int}_{\Theta(\omega)}(A) = \text{Cl}_{\Theta(\omega)}(X - A) \subseteq X - F \), that is, \(F \subseteq \text{Int}_{\Theta(\omega)}(A) \).

Conversely, suppose that \(F \subseteq \text{Int}_{\Theta(\omega)}(A) \) where \(F \) is a closed subset of \(X \) such that \(F \subseteq A \). Then for any open subset \(U \) of \(X \) such that \(X - A \subseteq U \), we have \(X - U \subseteq X - A \) and \(X - U \subseteq \text{Int}_{\Theta(\omega)}(A) \). Then by Lemma (3.13), \(X - \text{Int}_{\Theta(\omega)}(A) = \text{Cl}_{\Theta(\omega)}(X - A) \subseteq U \). Hence \(X - A \) is a \(G_\Theta(\omega) \)-closed (i.e., \(A \) is a \(G_\Theta(\omega) \)-open set). \(\square \)

Theorem 3.19. If \(A \) is a \(G_\Theta(\omega) \)-closed subset of a topological space \((X, \tau)\) then \(\text{Cl}_{\Theta(\omega)}(A) - A \) contains no nonempty closed set.

Proof. Suppose that \(\text{Cl}_{\Theta(\omega)}(A) - A \) contains nonempty closed set \(F \). Then

\[
F \subseteq \text{Cl}_{\Theta(\omega)}(A) - A \subseteq \text{Cl}_{\Theta(\omega)}(A).
\]

Since \(A \subseteq \text{Cl}_{\Theta(\omega)}(A) \) then \(F \subseteq X - A \) and so \(A \subseteq X - F \). Since \(A \) is a \(G_\Theta(\omega) \)-closed set and \(X - F \) is an open subset of \(X \), then \(\text{Cl}_{\Theta(\omega)}(A) \subseteq X - F \) and so \(F \subseteq X - \text{Cl}_{\Theta(\omega)}(A) \). Therefore

\[
F \subseteq \text{Cl}_{\Theta(\omega)}(A) \cap (X - \text{Cl}_{\Theta(\omega)}(A)) = \emptyset
\]

and so \(F = \emptyset \). Hence \(\text{Cl}_{\Theta(\omega)}(A) - A \) contains no nonempty closed set. \(\square \)

Corollary 3.20. If \(A \) is a \(G_\Theta(\omega) \)-closed subset of a topological space \((X, \tau)\) then \(\text{Cl}_{\Theta(\omega)}(A) - A \) is a \(G_\Theta(\omega) \)-open set.

Proof. By Theorem (3.19), \(\text{Cl}_{\Theta(\omega)}(A) - A \) contains no nonempty closed set, and it is clear that \(\emptyset \subseteq \text{Int}_{\Theta(\omega)}(\text{Cl}_{\Theta(\omega)}(A) - A) \) then by Theorem (3.18), \(\text{Cl}_{\Theta(\omega)}(A) - A \) is a \(G_\Theta(\omega) \)-open set. \(\square \)

Theorem 3.21. If \(A \) is a \(G_\Theta(\omega) \)-closed subset of a topological space \((X, \tau)\) and \(B \subseteq X \). If \(A \subseteq B \subseteq \text{Cl}_{\Theta(\omega)}(A) \) then \(B \) is a \(G_\Theta(\omega) \)-closed set.

Proof. Let \(U \) be an open set in \(X \) such that \(B \subseteq U \). Then \(A \subseteq B \subseteq U \). Since \(A \) is a \(G_\Theta(\omega) \)-closed set then \(\text{Cl}_{\Theta(\omega)}(A) \subseteq U \). Since \(B \subseteq \text{Cl}_{\Theta(\omega)}(A) \) then

\[
\text{Cl}_{\Theta(\omega)}(B) \subseteq \text{Cl}_{\Theta(\omega)}(\text{Cl}_{\Theta(\omega)}(A)) = \text{Cl}_{\Theta(\omega)}(A) \subseteq U.
\]

That is, \(B \) is a \(G_\Theta(\omega) \)-closed set. \(\square \)
Theorem 3.22. Let \(A \) be a \(G_{\Theta}(\omega) \)-closed subset of a topological space \((X, \tau)\). Then \(A = \text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) \) if and only if \(\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A \) is a closed set.

Proof. Let \(\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A \) be a closed set. Since \(\text{Int}_{\Theta(\omega)}(A) \subseteq A \) and \(A \subseteq \text{Cl}_{\Theta(\omega)}(A) \), then \(\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) \subseteq \text{Cl}_{\Theta(\omega)}(A) \). Then \(\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A \subseteq \text{Cl}_{\Theta(\omega)}(A) - A \), this implies

\[
\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A \subseteq X - A.
\]

Hence \(A \subseteq X - (\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A) \). Since \(A \) is a \(G_{\Theta(\omega)} \)-closed set and \(X - (\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A) \) is an open set containing \(A \), then \(\text{Cl}_{\Theta(\omega)}(A) \subseteq X - (\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A) \), this implies

\[
\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A \subseteq X - \text{Cl}_{\Theta(\omega)}(A).
\]

Therefore

\[
\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A \subseteq \text{Cl}_{\Theta(\omega)}(A) \cap (X - \text{Cl}_{\Theta(\omega)}(A)) = \emptyset.
\]

Hence \(\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A = \emptyset \), that is, \(\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) = A \).

Conversely, if \(A = \text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) \) then \(\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A = \emptyset \) and hence \(\text{Cl}_{\Theta(\omega)}(\text{Int}_{\Theta(\omega)}(A)) - A \) is a closed set. \(\square \)

Theorem 3.23. Let \(Y \) be an open subset of a topological space \((X, \tau)\). If \(A \) is a \(\Theta(\omega) \)-open set in \((X, \tau)\) then \(A \cap Y \) is a \(\Theta(\omega) \)-open set in \((Y, \tau_{Y})\).

Proof. Since \(A \) is a \(\Theta(\omega) \)-open set in \((X, \tau)\), then \(A \subseteq \text{Cl}(\text{Int}_{\omega}(\text{Cl}(A))) \). Since \(Y \) is an open set, then by Theorem (2.1),

\[
A \cap Y = (A \cap Y) \cap Y \subseteq [(\text{Cl}(\text{Int}_{\omega}(\text{Cl}(A)))) \cap Y] \cap Y
\]

\[
\subseteq \text{Cl}(\text{Int}_{\omega}(\text{Cl}(A))) \cap Y = \text{Cl}_{Y}[\text{Int}_{\omega}(\text{Cl}(A)) \cap Y]
\]

\[
= \text{Cl}_{Y}[\text{Int}_{\omega}(\text{Cl}(A)) \cap \text{Int}_{\omega}(Y)] = \text{Cl}_{Y}[\text{Int}_{\omega}(\text{Cl}(A) \cap Y)]
\]

\[
= \text{Cl}_{Y}[\text{Int}_{\omega}(\text{Cl}(A \cap Y))] \subseteq \text{Cl}_{Y}[\text{Int}_{\omega}(\text{Cl}(A \cap Y))]
\]

Therefore \(A \cap Y \) is a \(\Theta(\omega) \)-open set in \((Y, \tau_{Y})\). \(\square \)

Theorem 3.24. Let \(Y \) be an open subset of a topological space \((X, \tau)\). If \(A \) is a \(\Theta(\omega) \)-open set in \((Y, \tau_{Y})\) then \(A \) is a \(\Theta(\omega) \)-open set in \((X, \tau)\).

Proof. Since \(A \) is a \(\Theta(\omega) \)-open set in \((Y, \tau_{Y})\) and since \(Y \) is an open set, then

\[
A \subseteq \text{Cl}_{Y}[\text{Int}_{\omega}(\text{Cl}(A))] = \text{Cl}(\text{Int}_{\omega}[\text{Cl}(Y) \cap (\text{Cl}(A))]) \cap Y
\]

\[
\subseteq \text{Cl}(\text{Int}_{\omega}(\text{Cl}(A))) \cap Y = \text{Cl}(\text{Int}_{\omega}(\text{Cl}(A))) \cap Y
\]

\[
\text{Cl}(\text{Int}_{\omega}(\text{Cl}(A) \cap Y)) = \text{Cl}(\text{Int}_{\omega}(\text{Cl}(A)))
\]

\[
\text{Cl}(\text{Int}_{\omega}(\text{Cl}(A \cap Y))) \subseteq \text{Cl}(\text{Int}_{\omega}(\text{Cl}(A \cap Y)))
\]

Therefore \(A \) is a \(\Theta(\omega) \)-open set in \(X \). \(\square \)
Theorem 3.25. Let Y be an open subset of a topological space (X, τ) and A be a subset of Y. Then $\Cl_{\Theta(\omega)}|_Y(A) = \Cl_{\Theta(\omega)}(A) \cap Y$.

Proof. Let $x \in \Cl_{\Theta(\omega)}|_Y(A)$ and G be a $\Theta(\omega)$--open set in X containing x. By Theorem (3.23), $G \cap Y$ is a $\Theta(\omega)$--open set in Y containing x and since $x \in \Cl_{\Theta(\omega)}|_Y(A)$, then $G \cap A = (G \cap Y) \cap A \neq \emptyset$. Then $x \in \Cl_{\Theta(\omega)}(A)$ and since $x \in Y$, this implies $x \in \Cl_{\Theta(\omega)}(A) \cap Y$. That is, $\Cl_{\Theta(\omega)}|_Y(A) \subseteq \Cl_{\Theta(\omega)}(A) \cap Y$. On the other side, let $x \in \Cl_{\Theta(\omega)}(A) \cap Y$ and O be a $\Theta(\omega)$--open set in Y containing x. By Theorem (3.24), $O = G \cap Y$ for some $\Theta(\omega)$--open set G in X. Since $x \in \Cl_{\Theta(\omega)}|_Y(A)$, then $G \cap A \neq \emptyset$ and so $(G \cap Y) \cap A \neq \emptyset$, since $x \in Y$. Hence $O \cap A \neq \emptyset$, that is, $x \in \Cl_{\Theta(\omega)}|_Y(A)$. Hence $\Cl_{\Theta(\omega)}(A) \cap Y \subseteq \Cl_{\Theta(\omega)}|_Y(A)$. \qed

Theorem 3.26. Let Y be an open subspace of a topological space (X, τ) and $A \subseteq Y$. If A is a $G_{\Theta(\omega)}$--closed subset in X then A is a $G_{\Theta(\omega)}$--closed set in Y.

Proof. Let O be an open set in Y such that $A \subseteq O$. Then $O = U \cap Y$ for some open set U in X and so $A \subseteq U$. Since A is a $G_{\Theta(\omega)}$--closed subset of X, then $\Cl_{\Theta(\omega)}(A) \subseteq U$. By Theorem (3.25), $\Cl_{\Theta(\omega)}|_Y(A) = \Cl_{\Theta(\omega)}(A) \cap Y \subseteq U \cap Y = O$. Hence A is a $G_{\Theta(\omega)}$--closed set in Y. \qed

Theorem 3.27. Let Y be an open subspace of a topological space (X, τ) and $A \subseteq Y$. If A is a $G_{\Theta(\omega)}$--closed subset of Y and Y is $\Theta(\omega)$--closed in X then A is a $G_{\Theta(\omega)}$--closed set in X.

Proof. Let U be an open subset in X such that $A \subseteq U$. Then $A \subseteq U \cap Y$ and $U \cap Y$ is open in Y. Since A is a $G_{\Theta(\omega)}$--closed subset in Y, then $\Cl_{\Theta(\omega)}|_Y(A) \subseteq U \cap Y$. Since Y is an open set in X and it is $\Theta(\omega)$--closed in X then by Theorem (3.25),

$$\Cl_{\Theta(\omega)}(A) = \Cl_{\Theta(\omega)}(A \cap Y) \subseteq \Cl_{\Theta(\omega)}(A) \cap \Cl_{\Theta(\omega)}|_Y(A) \subseteq \Cl_{\Theta(\omega)}(A) \cap \Cl_{\Theta(\omega)}|_Y(Y) = \Cl_{\Theta(\omega)}(A) \cap Y \subseteq U \cap Y \subseteq U.$$

Hence A is a $G_{\Theta(\omega)}$--closed set in X. \qed

4. $\Theta(\omega)$--Continuous functions

Definition 4.1. A function $f : (X, \tau) \rightarrow (Y, \rho)$ of a topological space (X, τ) into a space (Y, ρ) is called $\Theta(\omega)$--continuous if $f^{-1}(U)$ is a $\Theta(\omega)$--open set in X for every open set U in Y.

Theorem 4.2. A function $f : (X, \tau) \rightarrow (Y, \rho)$ of a topological space (X, τ) into a space (Y, ρ) is $\Theta(\omega)$--continuous if and only if $f^{-1}(F)$ is a $\Theta(\omega)$--closed set in X for every closed set F in Y.

Theorem 4.3. Every ω--continuous function is $\Theta(\omega)$--continuous function.

The converse of the last theorem does not need to be true.

Example 4.4. Let $f : (\mathbb{R}, \tau) \rightarrow (\mathbb{R}, \rho)$ be a function defined by $f(\tau) = \tau$, where

$\tau = (\emptyset, \mathbb{R})$ and $\rho = (\emptyset, \mathbb{R}, \{2\})$.

The function f is a $\Theta(\omega)$--continuous, since $f^{-1}(\{2\}) = \{2\}$ and $f^{-1}(\mathbb{R}) = \mathbb{R}$ are $\Theta(\omega)$--open sets in (\mathbb{R}, τ). The function f is not ω--continuous, since $f^{-1}(\{2\}) = \{2\}$ is not ω--open set in (\mathbb{R}, τ).

Theorem 4.5. If \(f : (X, \tau) \to (Y, \rho) \) is a \(\Theta(\omega) \)-continuous function then for each \(x \in X \) and each open set \(U \) in \(Y \) with \(f(x) \in U \), there exists a \(\Theta(\omega) \)-open set \(V \) in \(X \) such that \(x \in V \) and \(f(V) \subseteq U \).

Proof. Let \(x \in X \) and \(U \) be any open set in \(Y \) containing \(f(x) \). Put \(V = f^{-1}(U) \). Since \(f \) is a \(\Theta(\omega) \)-continuous then \(V \) is a \(\Theta(\omega) \)-open set in \(X \) such that \(x \in V \) and \(f(V) \subseteq U \).

Conversely, let \(U \) be any open set in \(Y \). Let \(x \in f^{-1}(U) \). Then \(f(x) \in U \) and hence by the hypothesis, there exists a \(\Theta(\omega) \)-open set \(V \) in \(X \) such that \(x \in V \) and \(f(V) \subseteq U \). Hence \(x \in V \subseteq f^{-1}(U) \), that is, \(f^{-1}(U) \) is a \(\Theta(\omega) \)-open set in \(X \). That is, \(f \) is a \(\Theta(\omega) \)-continuous. \(\square \)

Theorem 4.6. Let \(f : (X, \tau) \to (Y, \rho) \) be a function of a space \((X, \tau) \) into a space \((Y, \rho) \). Then \(f \) is a \(\Theta(\omega) \)-continuous if and only if \(f[\text{Cl}_{\Theta(\omega)}(A)] \subseteq \text{Cl}(f(A)) \) for all \(A \subseteq X \).

Proof. Let \(f \) be a \(\Theta(\omega) \)-continuous and \(A \) be any subset of \(X \). Then \(\text{Cl}(f(A)) \) is a closed set in \(Y \). Since \(f \) is a \(\Theta(\omega) \)-continuous then by Theorem (4.2), \(f^{-1}[\text{Cl}(f(A))] \) is a \(\Theta(\omega) \)-closed set in \(X \). That is,

\[
\text{Cl}_{\Theta(\omega)}[f^{-1}[\text{Cl}(f(A))]] = f^{-1}[\text{Cl}(f(A))].
\]

Since \(f(A) \subseteq \text{Cl}(f(A)) \) then \(A \subseteq f^{-1}[\text{Cl}(f(A))] \). This implies,

\[
\text{Cl}_{\Theta(\omega)}[A] \subseteq \text{Cl}_{\Theta(\omega)}[f^{-1}[\text{Cl}(f(A))]] = f^{-1}[\text{Cl}(f(A))].
\]

Hence \(f[\text{Cl}_{\Theta(\omega)}(A)] \subseteq \text{Cl}(f(A)) \).

Conversely, let \(H \) be any closed set in \(Y \), that is, \(\text{Cl}(H) = H \). Since \(f^{-1}(H) \subseteq X \). Then by the hypothesis,

\[
f[\text{Cl}_{\Theta(\omega)}[f^{-1}(H)]] \subseteq \text{Cl}(f[f^{-1}(H)]) \subseteq \text{Cl}(H) = H.
\]

This implies, \(\text{Cl}_{\Theta(\omega)}[f^{-1}(H)] \subseteq f^{-1}(H) \). Hence \(\text{Cl}_{\Theta(\omega)}[f^{-1}(H)] = f^{-1}(H) \), that is, \(f^{-1}(H) \) is a \(\Theta(\omega) \)-closed set in \(X \). Therefore \(f \) is a \(\Theta(\omega) \)-continuous. \(\square \)

Theorem 4.7. Let \(f : (X, \tau) \to (Y, \rho) \) be a function of a space \((X, \tau) \) into a space \((Y, \rho) \). Then \(f \) is \(\Theta(\omega) \)-continuous if and only if \(\text{Cl}_{\Theta(\omega)}[f^{-1}(B)] \subseteq f^{-1}[\text{Cl}(B)] \) for all \(B \subseteq Y \).

Proof. Let \(f \) be a \(\Theta(\omega) \)-continuous and \(B \) be any subset of \(Y \). Then \(\text{Cl}(B) \) is a closed set in \(Y \). Since \(f \) is a \(\omega \)-continuous then by Theorem (4.2), \(f^{-1}[\text{Cl}(B)] \) is a \(\Theta(\omega) \)-closed set in \(X \). That is,

\[
\text{Cl}_{\Theta(\omega)}[f^{-1}[\text{Cl}(B)]] = f^{-1}[\text{Cl}(B)].
\]

Since \(B \subseteq \text{Cl}(B) \) then \(f^{-1}(B) \subseteq f^{-1}[\text{Cl}(B)] \). This implies,

\[
\text{Cl}_{\Theta(\omega)}[f^{-1}(B)] \subseteq \text{Cl}_{\Theta(\omega)}[f^{-1}[\text{Cl}(B)]] = f^{-1}[\text{Cl}(B)].
\]

Hence \(\text{Cl}_{\Theta(\omega)}[f^{-1}(B)] \subseteq f^{-1}[\text{Cl}(B)] \).

Conversely, let \(H \) be any closed set in \(Y \), that is, \(\text{Cl}(H) = H \). Since \(H \subseteq Y \) Then, by the hypothesis,

\[
\text{Cl}_{\Theta(\omega)}[f^{-1}(H)] \subseteq f^{-1}[\text{Cl}(H)] = f^{-1}(H).
\]

This implies, \(\text{Cl}_{\Theta(\omega)}[f^{-1}(H)] \subseteq f^{-1}(H) \). Hence \(\text{Cl}_{\Theta(\omega)}[f^{-1}(H)] = f^{-1}(H) \), that is, \(f^{-1}(H) \) is a \(\Theta(\omega) \)-closed set in \(X \). Hence \(f \) is a \(\Theta(\omega) \)-continuous. \(\square \)

Theorem 4.8. Let \(f : (X, \tau) \to (Y, \rho) \) be a function of a space \((X, \tau) \) into a space \((Y, \rho) \). Then \(f \) is \(\Theta(\omega) \)-continuous if and only if \(f^{-1}(\text{Int}(B)) \subseteq \text{Int}_{\Theta(\omega)}[f^{-1}(B)] \) for all \(B \subseteq Y \).
Proof. Let \(f \) be a \(\Theta(\omega) \)--continuous and \(B \) be any subset of \(Y \). Then \(\text{Int}(B) \) is an open set in \(Y \). Since \(f \) is a \(\omega \)--continuous then \(f^{-1}[\text{Int}(B)] \) is a \(\Theta(\omega) \)--open set in \(X \). That is,
\[
\text{Int}_{\Theta(\omega)}[f^{-1}[\text{Int}(B)]]=f^{-1}[\text{Int}(B)].
\]
Since \(\text{Int}(B) \subseteq B \) then \(f^{-1}[\text{Int}(B)] \subseteq f^{-1}(B) \). This implies,
\[
f^{-1}[\text{Int}(B)]=\text{Int}_{\Theta(\omega)}[f^{-1}[\text{Int}(B)]]\subseteq\text{Int}_{\Theta(\omega)}(f^{-1}(B)).
\]
Hence \(f^{-1}(\text{Int}(B)) \subseteq \text{Int}_{\Theta(\omega)}(f^{-1}(B)) \).

Conversely, let \(U \) be any open set in \(Y \), that is, \(\text{Int}(U)=U \). Since \(U \subseteq Y \). Then by the hypothesis,
\[
f^{-1}(U)=f^{-1}(\text{Int}(U))\subseteq\text{Int}_{\Theta(\omega)}(f^{-1}(U)).
\]
This implies, \(f^{-1}(U) \subseteq \text{Int}_{\Theta(\omega)}(f^{-1}(U)) \). Hence \(f^{-1}(U)=\text{Int}_{\Theta(\omega)}(f^{-1}(U)) \), that is, \(f^{-1}(U) \) is a \(\Theta(\omega) \)--open set in \(X \). Hence \(f \) is \(\Theta(\omega) \)--continuous.

Definition 4.9. A function \(f : (X, \tau) \rightarrow (Y, \rho) \) of a topological space \((X, \tau) \) into a space \((Y, \rho) \) is called generalized \(\Theta(\omega) \)--continuous (simply \(G_{\Theta(\omega)} \)--continuous) function, if \(f^{-1}(U) \) is a \(G_{\Theta(\omega)} \)--open set in \(X \) for every open set \(U \) in \(Y \).

Theorem 4.10. A function \(f : (X, \tau) \rightarrow (Y, \rho) \) of a topological space \((X, \tau) \) into a space \((Y, \rho) \) is \(G_{\Theta(\omega)} \)--continuous if and only if \(f^{-1}(F) \) is a \(G_{\Theta(\omega)} \)--closed set in \(X \) for every closed set \(F \) in \(Y \).

Theorem 4.11. Every \(\Theta(\omega) \)--continuous function is \(G_{\Theta(\omega)} \)--continuous function.

The converse of the last theorem is no need to be true.

Example 4.12. Let \(f : (\mathbb{R}, \tau) \rightarrow (\mathbb{R}, \rho) \) be a function defined by \(f(\tau)=\tau \), where
\[
\tau=\{\emptyset, \mathbb{R}, \mathbb{R}-(2,3)\} \text{ and } \rho=\{\emptyset, \mathbb{R}, \{2\}\}.
\]
The function \(f \) is a \(G_{\Theta(\omega)} \)--continuous, since \(f^{-1}(\{2\})=\{2\} \) and \(f^{-1}(\mathbb{R})=\mathbb{R} \) are \(G_{\Theta(\omega)} \)--open sets in \((\mathbb{R}, \tau) \). The function \(f \) is not \(\Theta(\omega) \)--continuous, since \(f^{-1}(\{2\})=\{2\} \) is not \(\Theta(\omega) \)--open set in \((\mathbb{R}, \tau) \).

Theorem 4.13. Let \(f : (X, \tau) \rightarrow (Y, \rho) \) be a function of a \(T_{1/2} \)--space \((X, \tau) \) into a space \((Y, \rho) \). If \(f \) is a \(G_{\Theta(\omega)} \)--continuous then it is a \(\Theta(\omega) \)--continuous.

Proof. Let \(f : (X, \tau) \rightarrow (Y, \rho) \) be a \(G_{\Theta(\omega)} \)--continuous function and \(U \) be any open set in \(Y \). Then \(f^{-1}(U) \) is a \(G_{\Theta(\omega)} \)--open set in \(X \). Since \(X \) is a \(T_{1/2} \)--space then by Theorem (3.9), \(f^{-1}(U) \) is a \(\Theta(\omega) \)--open set in \(X \). That is, \(f \) is a \(\Theta(\omega) \)--continuous function.

Theorem 4.14. Every \(gw \)--continuous function is \(G_{\Theta(\omega)} \)--continuous function.

Proof. Let \(f : (X, \tau) \rightarrow (Y, \rho) \) be a \(gw \)--continuous function and \(U \) be any open set in \(Y \). Then \(f^{-1}(U) \) is a \(gw \)--open set in \(X \) and by Theorem (3.10), \(f^{-1}(U) \) is a \(G_{\Theta(\omega)} \)--open set in \(X \). That is, \(f \) is a \(G_{\Theta(\omega)} \)--continuous function.

The converse of the last theorem is no need to be true.
Example 4.15. Let $f : (\mathbb{R}, \tau) \rightarrow (\mathbb{R}, \rho)$ be a function defined by

$$f(x) = \begin{cases} 2, & x \in \mathbb{IR} \\ x, & x \notin \mathbb{IR} \end{cases}$$

where $\tau = \{\emptyset, \mathbb{R}, \mathbb{IR} \cup \{2\}\}$ and $\rho = \{\emptyset, \mathbb{R}, \{2\}\}$.

\mathbb{IR} is a set of irrational numbers. The function f is a $G_{\Theta(\omega)}$-continuous, since $f^{-1}(\{2\}) = \mathbb{IR}$ and $f^{-1}(\mathbb{R}) = \mathbb{IR}$ are $G_{\Theta(\omega)}$-open sets in $$(\mathbb{R}, \tau).$$ The function f is not ω-continuous, since $f^{-1}(\{2\}) = \mathbb{IR}$ is not $G_{\Theta(\omega)}$-open set in (\mathbb{R}, τ).

Theorem 4.16. If $f : (X, \tau) \rightarrow (Y, \rho)$ is a $G_{\Theta(\omega)}$-continuous function then for each $x \in X$ and each open set U in Y with $f(x) \in U$, there exists a $G_{\Theta(\omega)}$-open set V in X such that $x \in V$ and $f(V) \subseteq U$.

Proof. Let $x \in X$ and U be any open set in Y containing $f(x)$. Put $V = f^{-1}(U)$. Since f is a $G_{\Theta(\omega)}$-continuous then V is a $G_{\Theta(\omega)}$-open set in X such that $x \in V$ and $f(V) \subseteq U$. □

The converse of the last theorem need not be true.

Example 4.17. Let $f : (\mathbb{R}, \tau) \rightarrow (\mathbb{R}, \rho)$ be a function defined by

$$f(x) = \begin{cases} 2, & x \in \{2, 3\} \\ x, & x \notin \{2, 3\} \end{cases}$$

where $\tau = \{\emptyset, \mathbb{R}, \mathbb{R} - \{2, 3\}\}$ and $\rho = \{\emptyset, \mathbb{R}, \{2\}\}$.

The function f is not $G_{\Theta(\omega)}$-continuous, since $f^{-1}(\{2\}) = \{2, 3\}$ is not $G_{\Theta(\omega)}$-open set in $$(\mathbb{R}, \tau).$$ On the other hand, for all $x \in \mathbb{IR}$, $\{x\}$ is a $G_{\Theta(\omega)}$-open set in (\mathbb{R}, τ).

References