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Abstract

Sterile insect techniques (SIT) are biological, non-polluting pest control methods used on farms. The
release of false male codling moths (FCM) is used in this method to reduce the number of fertile female
FCM in the farm population. In this study, a mathematical model that simulates the interaction between
the susceptible host, the sterile male FCM population, and the wild FCM population is developed. The local
and global stability analysis of the model is analysed and found to be asymptotically stable when R, < 1. A
threshold number of sterile FCM is determined above which the FCM control is effective. These theoretical
results are reorganised in terms of possible strategies for the control of FCM and are numerically illustrated.

Keywords: Sterile insect technique, Mathematical modelling, codling moth, Stability analysis, Plant pest
model, pest control .
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1. Introduction

Sterile Insect Technique (SIT) has been used successfully for more than half a century
to eliminate or control many pest species, especially the dipteran [4]. This technique is
a biological control method that prevents insect pests from reproducing naturally. This
is achieved by treating male insect pests with chemical, physical, or other radical proce-
dures to make them infertile, preventing them from reproducing regardless of their sex
drive [6]. In SIT, sterile organisms mate with fertile organisms, leading to unproductive
mating, thus controlling their population by reducing the number of viable offspring [14].
Consequently, this leads to the decline of the FCM population over time. Therefore, releas-
ing sufficiently many sterile males into the wild FCM population over a sufficiently long
period of time can lead to the reduction or elimination of FCM on a farm [32, 3]. This
technique has given farmers the ability to control pests from certain insects in livestock,
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fruits, vegetables, and fibre crops. It is also an environmentally friendly approach, as it
uses no noxious chemicals, leaves no residues, and is entirely species specific, thus having
no non- target effects on crops and livestock [15].

However, in most SIT models, none has been used in the control of false coding moth
(FCM). The main critical factors in pest control using SIT are the critical sterile release
rate and the over-inundation ratio, which is the measure of the ratio of sterile males to
wild males [38]. False codling moth (FCM), Thaumatotibia leucotreta, is considered the
most significant indigenous pest [19]. This is due to its potential economic impact on
many horticultural and agricultural crops [35, 19]. Consequently, FCM is a major threat
to food security, the supply of raw materials for manufacturing, foreign exchange, and
employment in many countries [9, 19].

Sterile release models were developed by [3] to control anopheles mosquitoes and [4]
to determine the rate of sterile release. However, most of these mathematical models do
not address the population dynamics of FCM, the control measure that this study seeks to
address. Planning efficient and cost-effective control is a real challenge that can explain
the failure of most experimental methods of the FCM control strategy [2]. This is because
biological systems can become unstable or stable if certain parameters are changed ap-
propriately, that is, if their values pass through bifurcation points [29, 37, 35]. Therefore,
more scientific studies are needed on how changes such as SIT affect the biological system
of host-pest relationships.

False codling moth (FCM), Thaumatotibia leucotreta is considered the most significant
indigenous pest. This is due to its potential economic impact on many horticultural and
agricultural crops, with crop losses ranging from 20 — 90% ([36]. Consequently, FCM is a
major threat to food security, supply of raw material for manufacturing, foreign exchange
and employment in many countries [10]. FCM is widely distributed across Africa and has
been reported in over 40 Africa countries, including Kenya [39]. The FCM is not con-
sidered to be established outside of Africa. However, it is commonly intercepted during
quarantine inspections in Europe and United States [18]. Therefore, FCM is a pest of phy-
tosanitary concern and it impedes export in most international markets, as it is endemic
to sub-Saharan Africa [20, 28]. Consequently, interception of even an individual pest in a
consignment could lead to rejection of the entire consignment [28, 27].

After the adults mate, the female deposits eggs on fruit or foliage, either in batches
or as single eggs. The eggs are hemispherical in shape with a granulated surface and
translucent in color and appear cream to white when first laid [39]. The eggs are usually
deposited on the surface of the host fruit over irregular intervals throughout the female’s
life. Approximately 100 eggs are laid by a single female over her life time. However under
ideal temperatures, the number of eggs laid by a single female may reach 800 eggs. Egg
hatching rate is temperature dependent, where by higher temperatures correlate with an
increase in egg maturity rate. The period from oviposition to hatching may range from
9-14 days with hatching occurring at any time of the day [39]. A newly hatched larvae
are creamy-white with a black head. The hatched larvae burrow into the fruit of the host
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plant through a hole that they create on the fruit. This results in a discoloration of fruit
around the burrowed area. Once the larvae are inside the fruit they begin to feed on the
fruit. As they get older, they move towards the centre of the fruit. This causes the fruit
to ripen and drop before the harvest season and also makes the damaged fruit to become
undesirable, vulnerable and prone to secondary pests such as fungal organisms, bacteria,
scavengers . A mature larvae is approximately 10-15mm in length and pink-red in color .
The mature larvae then exit the fruit through frass filled exit holes where they then drop
to the ground on silken threads [39].

In the pupal stage, the FCM larvae spin a white-cream colored cocoon in the soil before
they emerge as adults. The length of this stage is both temperature and gender dependent
whereby warmer periods are correlated with a more rapid rate of emergence, and cooler
temperatures reduce the process to a slower rate. Pupae are cream colored and soft at first
but then harden and darken as they mature. Pupae are sensitive to cold temperatures and
rainfall when young The pupae emerge out of the cocoon just before the adult emerges
out of the pupal casing [30]. Pupation and emergence of adults occurs in the spring and is
temperature-dependent [10]. Adult FCM are small and inconspicuous. They are inactive
during the day, where they take refuge in shaded portions of the host plant, and are only
active during portions of the night. The male lifespan is between 14 and 57 days, whereas
females may live between 16 and 70 days. Adults have patterned wings of 12.5 to 20 mm
in a variation of colors, including grey, brown, black, and orange-brown. To attract males,
adult females release pheromone at night, a few hours after dark, peaking at five hours
and then decreasing thereafter until sunrise [10].

[12] conducted a study on area- wide control tactics for the false codling moth by
integrating the sterile release technique with the release of the egg parasitoid. In the
study, both treated males and females were released into the field together with the par-
asitoid Trichogramma cryptophlebia. The result showed that the combined field release
of the irradiated false codling moth and the parasitoid resulted in a rapid increase in the
population of the parasitoid, which had a positive impact on the suppression of the false
codling moth population, which is more effective than when either technique was em-
ployed separately. False codling moth is a phytosanitary pest and impedes export on most
international markets, as it is endemic in sub-Saharan Africa [20, 28]. Consequently, the
intercept of even an individual pest in a consignment could lead to the rejection of the
entire consignment [28, 27]. [8] also conducted a study on the radiation biology and
inherited sterility of false codling moth. They examined the effect of increasing doses of
gamma irradiation on the fecundity and fertility of false codling moth. Newly emerged
adults as well as mature pupae were treated with doses of radiation and adults were in-
bred to fertility counter parts. the results from their study showed that fecundity was not
adversely affected by dose of radiation when untreated females were mated to treated
females. However, the fecundity of treated females mated to either untreated or treated
males declined as the dose of radiation increased.

[31] studied the effects of fecundity, mortality and distribution of the initial condition
in phenological model based on a system of partial differential equations. The temporal
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dynamics of a stage-structured population and the distribution of the individuals on phys-
iological age within each stage was also established. In the study fecundity dependent
on physiological age and on temperature. The study reported that the introduction of the
fecundity as a function of the adult physiological age and temperature can change the
dynamics depending on the oviposition profile with respect to the physiological age. They
recommended that fecundity, mortality and age distribution should always be considered
for the purpose of model definition and calibration in pest management for proper deci-
sion in the implementation of pest control strategies.

[16] developed a computational mathematical model to study the movement and stag-
specific habitat preferences of a polyphagous insects. In the study, they reported that
parent-offspring conflict always emerge as providing the best host for offspring develop-
ment is detrimental to adult survival and fecundity. The parent-offspring conflict was
simulated when adult insects exploit two crops (Corn and Soybean) which provide differ-
ent nutritional advantages for each insect stage. The study reported that there exist an
optimal period of time in which insect alternate between each host.

Chemical pesticides have been widely used to control pest populations such as FCM for
a long time in the world [23]. However, its widespread use has resulted in environmental
pollution and a reduction in natural pest enemies, resulting in unfavourable environmen-
tal side effects [11]. Furthermore, the emergence of insect resistance to chemical products
has increased the demand for stronger and more toxic pesticides in order to maintain ef-
ficacy. Therefore, the widespread use of pesticides is not a long-term pest-control solution
[2]. As a result, there is growing interest in the development of non-polluting control
strategies; these strategies place a special emphasis on the ecology and behaviour of the
involved species [5]. Therefore, to prevent devastating impacts on the economy , and
ensure adequate food security, social life, health, and biodiversity; efficient control, un-
derstanding of biodiversity, and management of FCM are essential [2, 40]. One of the
most promising strategies is the use of Pheromone trap [22] and sterile insect technique
(SIT).

Mathematical modeling is a method of simulating real-life situations with mathemati-
cal equations to predict future behavior by generating a simplified representation of a real
system [1, 33]. Mathematical modeling is an important tool that can be used in study-
ing biological and agricultural phenomena. The application of mathematical theory to
the problem allows a qualitative and quantitative evaluation of the cases of interest (Adul
Latif, 2014). A mathematical model describes a system by a set of state variables and
equations that establish relationships between those variables and the governing parame-
ters [34, 21]. These models are useful experimental tools for building and testing theories,
assessing quantitative conjectures, answering specific questions, determining sensitivities
to changes in parameter values, and estimating key parameters from data [22, 33].

Mathematical models can also be used in comparing, predicting, planning, implement-
ing, evaluating, and optimizing various detection, prevention, therapy, and control pro-
grams [21, 22]. The models can further help in getting better understanding of the dy-
namics of the pest population, and various control strategies can be studied to optimise the
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control of pest population [3, 2]. Mathematical models are built on biological and eco-
logical knowledge of the population dynamics, independently from specific observation
data. Although, the output of mathematical models is not as good in fitting observation
data, they are less costly, more flexible and offer the possibility to change the settings and
simulate various scenarios [34, 1, 16].

This paper, seeks to develop a mathematical model of the sterile insect technique for
control of FCM. This will shed more light on the control strategies of the insect pest pop-
ulation.

2. Preliminaries

Articles should be divided into sections and subsections. Principal sections should be
written consecutively, e.g., as

3. Model Formulation

The proposed model for the sterile insect techniques for control of FCM, is a modi-
fied version of [22]. The model is subdivided into nine compartments representing the
susceptible host population (S), the FMC egg population (E), the FCM larval population
(L), the FCM purpal population (P), the mature female (F), the mature male population
(M), the fertilized female population (F¢), the non-fertilized female population (F,,) and
the sterile male population (Ms). Following successful mating with the fertile male, the
fertile female lays fertile eggs on the susceptible host, which hatch into larvae that burrow
into the fruit. We assume that the susceptible fruit’s growth rate follows a logistic growth
model, and that once the larvae attack the susceptible fruit, it is removed. The sterile
insects are introduced into the FCM’s wild population. When a fertile female FCM mates
with a sterile male FCM, the fertile female lays eggs that do not hatch into larvae. A set of
differential equations that describe the transfer of individuals between classes is used to
model the host FCM interaction.

The susceptible host is harvested at rate p and the environmental carrying capacity of
susceptible host is Ky, with « as the intrinsic growth rate of the susceptible host. Assume
that larval attacks rate is &, m is the half-saturation constant. It is important to note that,
at the larval stage, FCM is most destructive to the susceptible host. The sterile insect di-
rectly affects the fertile male female compartment, Assume that fertile eggs are laid only
by fertilised fertile females after a successful mating with fertile males at time t and r is
the intrinsic egg laying rate, A is the carrying capacity of the fertile egg at the susceptible
host, ¢ is the egg conversion rate, A; is the transfer rate from the fertile egg stage to the
fertile larva, and w; is the natural egg mortality rate. The larval conversion rate is given
by a and the transfer rate from the larval stage to the pupal stage are A, and w; is the
natural larval mortality rate. A3 is the number of fertile pupa that move to the adult stage
and wj3 is the mortality rate of the pupal stage.

After emergence from the pupal stage, the FCM can be a fertile female or a fertile
male, k is the fraction of the pupal population that emerged in fertile female. After laying
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egg the fertilised fertile female that returned to fertile female at rate 6;, 5, represents the
fraction of non fertilised fertile female that returned to fertile female after mating with the
sterile insect and after laying non-hatching eggs, A, is the transfer rate of fertile female
fertilised fertile female or non-fertilised fertile female, and w, is the natural mortality
rate of fertile female. The fraction of the pupal population that goes to the fertile male
compartment is given by (1 — k). where ws is the natural mortality of the fertile male. If
the sterile insect is released at a rate of \ and q is the fraction of the sterile male released
that joins the wild FCM population and wyg is the natural mortality of the sterile insect, and
u is the mating competitiveness of the sterile male. If the fraction of fertile females that
mate with the fertile male and move to the fertilised fertilised female compartment to lay
a fertile egg is given by q1, then q; represents the fraction of fertile females that mate with
the sterile male and move to the non-fertilised female compartment and lay non-hatching
eggs, with wg representing the natural mortality of fertilised female and wy is the natural
mortality of non-fertilised fertilised female.The system of ordinary differential equations
which describe the interaction of susceptible host, FCM and sterile insect is as follows:

asm _ (1—SK(?> S(t)—m—ms(t)

AE) _ (1_) — (M + W E(Y)

4O ) g+ % — (2 + w2)L(1)

d‘;(t” = NoL(t) — (A3 + w3)P(t)

dz‘l(tt) = AP (1) + B1F(t) + 82Fn (1) — iM(DF(E) — 2M(OF(D) —wgF(y) G
d’\gt(t) = (1—K)A3P(t) — wsM(t)

ngt(t) — qiM(t)F(t) — (81 + we(t)) Fe(t)

dF(Tilt(t) = oM (t)F(t) — (82 + wy(t)) Fu(t)
dNCl&(t) — Wqp — wsMs(t)

Where S(t) > 0,E(t) > 0,L(t) > 0,P(t) > 0,F(t) = 0,M(t) > 0,F¢(t) > 0,Fn(t) >
OI Ms(t) 2 0

3.1. Model Analysis

To preserve the biological validity of the model, the solutions to the system of differ-
ential equations 11 must be positive and finite for all time values. Declaring a population
as negative, for example, is not biologically feasible. Additionally, populations must be
finite in number, since both plants and pests have a finite number of cells. Furthermore,
boundedness and positivity demonstrate that once FCM attacks a susceptible host, its pop-
ulation can persist below the detectable threshold [41]. To make the solution of system 1
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model mathematically and entomologically meaningful, it must demonstrate that its state
variables are positive and bounded for all time t. That is, the system solution with a pos-
itive initial value will remain positive for all time t > 0. This can be demonstrated using
Theorem 1:

Theorem 3.1. If the initial conditions of the model system 1 are in domain D such that:

D ={(S(t), E(t), L(t), P(t), F(t), M(t), F¢(t), Fn(t), Ms(t))
€ R, 1 N(t) < ];(oc+1)+£}

Then all solutions of system equation 1 enter and remain in the same domain D:

Proof. Consider the set S(t), E(t), L(t), P(t), F(t), M(t), F¢(t), Fn(t), Ms(t) with any solu-
tion of system model 1 such that the total population is expressed as N(t) = S(t) + E(t) +

L(t) + P(t) + F(t) + M(t) + F¢(t) + Fn(t) + M,(t) and 450 — dS | dE | dL | 4P dF |

aM y dEe | dFn d]\f!s. Now, using the foregoing expression in the addition of system

dt
model 1, yields:

dN(t)  d
=g SO E(U) L) + PO+ F(t) + M(1) + Fr(1 (3.2)

+ Fn(t) + Mg ()}

AN(Y) _dS  dE_dL 4P dF  dM
dt dt dt dt dt dt dt
dF, dM; = dF,

dt * dt dt

[ S(t) ES(t)L(t)

+ | )<1_E”> bS(t) — (A1+w1)E(t)]

a&S(t)L(t)
* mtS()

+[7\2L( ) — (As + w3)P(t)]

+ [KA3P(t) + 81F¢(t) + 82Fn (t) — qiM(t)F(t) — q2Ms (t)F(t) — w4F(t)]
+[(1 = k)A3P(t) — wsM(t)] M(t)
+ [
+
_|_

_)\1E(t) +

— (A2 + wz)L(t)}

qiM(t)F(t) — (81 + we(t)) Fe(t)]
q2M;s (1) F(t) — (82 + w7 (t)) Fu(t)]
[ll)qu_ wSMs (t)]

This simplifies to:
where k = max{S(0),K} and ¥ = min{1, w1, w,, w3, wa, Ws, We, Wy + Tgwg} Then
dN

—— +WYN=k 1
dt+ (x+1)
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and its solutions become

N(t) < —(x+1)(1—exp(—¥t)) + N(0) exp(—¥t)

| =

At t — oo, we have N(t) < %(oc + 1). Implies that the solution is bounded for 0 < N <
%(oc +1). Thus, all solutions of the model system 1 in R, are restricted in the region:
D = {(S(t), E(t), L(t), P(t), F(t), M(t), Fe(t), Fu(t), Ms (1)) € RS - N(t) < § (a+1) +¢)
for all ¢ > 0 and t — 0. The models system 11’s solutions reveal the time evolution of
individuals within each class. The solution must correspond to natural phenomena for any
dynamic system to be well-posed [7]. As a result, it is established that the feasible solution
set for the host-pest interaction model is positively invariant, biologically meaningful, and
mathematically well posed. O

3.2. Equilibria Analysis

From a biological perspective, the equilibria points are classified into three main equi-
libria points of interest: FCM free equilibrium points (E), SIT free equilibrium points (E;),
combined co-existence equilibrium points (E,).

3.2.1. FCM free equilibrium points (E)

At the FCM-free equilibrium points (Eg), it is assumed that there is no pest prevalence
in the system; hence the population of the susceptible host grows logistically to maturity.
It is further assumed that there is no need for control methods. Therefore, to analyse
the equilibrium points without FCM in system model 1, the FCM components and control
components are set to zero, such that: E* = 0,L* = 0,P* = 0,F* = O,M* = 0,Ff =
0,F; = 0,M? = 0. This is achieved by setting the right-hand sides of the 1 equations of
the host-pest interaction model to zero, given by: Ey = (S*, E*, L%, P, B, M*, FE B, M:).
If(E*=0L"=0P"=0F =0M*=0,F; =0,F; =0,M; = 0), then the equations
representing the pest compartment reduce to zero to yield:

Eo = (Kn(x—11),0,0,0,0,0,0,0,0) (3.3)

3.2.2. SIT free equilibrium points (Eq)

At SIT free equilibrium points (E;), the false codling moths freely interacts with the
host without the presence of sterile insects in the population, it is a steady state solution
where FCM coexist naturally in the susceptible host population in the absence of sterile
insect males in the population. Therefore, the compartments of the sterile insect technique
of model system 11 are set to zero, such that Ep = (S°%, Eo&, [o& po& Fo& po&k Fo&) anqd
solve for the values of S°%, Eo% [ o& po& Fo& Mo& Fo& a5 shown in Equation 4:
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(S e, ESMLEY)
0=« <1 Ko > S(t) IS wS(t)
E(t)
0=1Fe(t) (1 A GS(t) — (A + wq)E(t)
B a&S(H)L(t)
0=ME(t)+ LS (A2 + wy)L(t)
0 =AoL(t) — (A3 + w3)P(t) (3.4
0 = kA3P(t) + 81F¢(t) + 82Fn (t) — qiM(t)F(t) — q2M; (t)F(t) — waF(t)
0=(1—«x)A3P(t) — wsM(t)
0 = A2q1M(t)F(t) — (81 + we(t)) Fe(t)
0 = q2M;(t)F(t) — (82 + wy(t)) Fnu(t)
0 = bap— wsMs (1)
Solving equation 4, yields 5:
So&(t) = —= (ul + m_ oc) Kn £ \/<p1 + m_ oc) —4(ELo% + um — am)Kp
2 Kn Kn
£ok () — ATFO%(1)S0% (1)
TP (1) So&(t) + A (A + w1)
oie 7\1E0&
L o o0&
(o + w2) (o + wn) — 2555 )
ok }\ZLO&
(A3t ws)
Fote _ KA3PO% + 5, F&
N wyq + Ay
Mo& (1 — k)AzPo&
w5
FO& _ MO&F?&
ok — —— _f_
(61 + we)
(3.5)

The equation 5 can be solved numerically using MATLAB software based on the values of
the parameters in Table 1. The solutions are graphically illustrated in Figures 1 and 2.
Figure 1 illustrates the dynamic of the total FCM population with time at the control free
equilibrium. From figure 1, it is observed that the total population of FCM rises sharply
from the initial population to maximum, then drops to below 400 and then starts to rise
again and stabilises at about 900 total population size of FCM where the control free

equilibrium exists.
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Figure 1: Total FCM Population Against Time Without Control

Figure 2 illustrates the dynamic of the susceptible host population over time at the free
control equilibrium. In Figure 2, it can be shown that the equilibrium point is reached at a
value lower than the carrying capacity of the susceptible host (K, = 1000). These results
from Figures 1 and 2 show the effect of FCM infestation on the susceptible host population
when there is no control measure.
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Figure 2: Susceptible Host Population against Time without Control
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3.2.3. co-existence equilibrium points (E;)

At Co-existence equilibrium points, the sterile insect, the FCM and the host natu-
rally coexists, such that, E = (S**& Ex*& L& pro& ok pfrx&e pra&e pro& nNex&) The
co-existence equilibrium point is the steady-state solution in which FCM co-exists natu-
rally in a population of susceptible hosts with only a sterile insect as a control agent.
To achieve this, the equations on the right-hand side of the host host-FCM interaction
model 11 equations is equated to zero as shown in Equation 18, and for the values of
S**&’ E**&, L**&, P**&, F**&” M**&, F:*&, F;ijl*&, MZ*&

B S**&(t) i E,S**&(t)l_**&(t) nde

* k&
0 =1F*&(t) <1 _E A(t)> GSTE(L) — (A + w1 ETE (1)
0=ME*&(t) + ° M SeE) (A2 + Tows ) L**¥(t)

0 = ML (1) — (A3 + w3)P**&(1)
0 = kAP () + 51 FF (1) + 8P (1) — A MR ] e
0= (1—Kk)AP*%(t) — wsM**¥(t)
**&
0=\ M™E()
Mrx& (1) + Mi*&(t)
*%&
0= HMET ()
M**&(t) + Mz*&(t)
0 =Pqp— wsMi*(t)

) Fre&(t) — (81 + we(t)) FF & (t)

)H%uw4@+wﬂuwﬁﬁw

(3.6)
Solving equation system 6, yields equation 7 and 8:

1
S&(t) = —= ul—i—ﬂ—oc Kp £ uﬁ—ﬂ—oc — 4L + um — oaom)Kp,
2 Kn Kn
Pty - ATOFPE0SE(Y
T rOFE()SHE(t) + A(Ag + wy)
L**& — AlE**&
(o +w2) (Mo +wp) — SES5 )
P**& _ )\2]_**&
(A3 + w3)

(3.7)
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Fre& KAgP**&
e Wy — 52)\4 + w67\4M**&
P o) (Mo EEAT] T (Braws) (M TE
Mt ws—8;
M**& — KAz
ws
sk & k&
?*& — }\4M Ff (3.8)
(81 + we) (M= 4 k)
A
ke 4 *x&
Fn — (6 ) M*& wg 1 Ff
2 + Wy ( Tan + )
M — Pam
s ws

Equations 7 and 8 are solved using MATLAB software based on the parameters outlined
in Table 1. The numerical solution is represented graphically in Figure 4 . Figure 3
depicts the total pest population versus time at the pheromone traps free equilibrium
points under different FCM initial populations. From figure 3, the total population of FCM
first increases from the initial population to maximum, then drops gradually and level off
at the equilibrium point. The increase of FCM population at first is because the number
of sterile insects released had not reached the optimal level in order to offer control, but
after the threshold value of pheromone is released is reached, the population of FCM
starts to decrease gradually. It converges at the equilibrium point irrespective of the initial
population of the FCM.
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Figure 3: Total Population of FCM Against Time in the Presence of SIT
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3.3. Basic Reproduction Number

In epidemiological models, the next-generation matrix has been extensively used to
calculate basic reproduction numbers. However, its application in entomology is limited,
and many entomological models do not use the next-generation matrix approach to deter-
mine the basic reproduction number of a system of ordinary differential equations [17].
However, [17] used the next-generation matrix method to investigate the autonomy and
stability of the predator-prey model. [17] defined "basic reproduction number" as the
number of offspring produced by a mature predator during its lifetime when introduced
in a prey-only environment with prey at carrying capacity. Other studies, such as [3] and
[3] have also used the next generation matrix to find the basic reproduction number of
entomological systems.

In this study, we follow the method outlined by [22], which yields equation 9:

B aKp (e — )&
%o = T K — ) (A2 + 02) (3:9)

The basic reproduction number measures the mean number of new offspring produced by
fertilised fertile females in an entirely susceptible host population with carrying capacity
without control. Since the basic reproduction number is less than unity, the likelihood of
FCM infestation in the susceptible host will be lower under control; that is, when the sterile
insects technique is used as control measures of FCM. However, changes in parameter
values that affect the basic reproduction number can increase basic reproduction, leading
to a FCM outbreak if proper mitigation is not used.

3.4. Stability Analysis

When studying dynamical systems, determining the long-term behaviour of a system
and locating crucial points that define the system’s stability both need knowledge of the
idea of linear stability, which is why this specific aspect of the study of dynamical systems
is so vitally significant. In control theory, it is utilised to build controllers that stabilise
unstable systems. Additionally, it is used in engineering and physics to investigate the
stability of structures and fluid flows [1].

3.4.1. Local Stability Analysis

Local stability of the equilibrium points of model system 1 is investigated in order to
establish whether if there is a small perturbation of the system (for example, a small num-
ber of false codling moths is introduced into the population), then after some time the
system will return to the equilibrium point. Local stability analysis is performed by con-
structing the Jacobian matrix of model system 11 and solving it at the equilibrium points:
FCM free equilibrium point, control free equilibrium point, and co-existence equilibrium
points. Now, let system 11 be written in vector form as given in Equation 10:

dy
T f(x) (3.10)

where:
x = (S(t), E(t), L(t), P(t), F(t), M(t), F¢(t), Fn(t), Ms(t))
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Then, the function x can be written in matrix form as shown in Equation 11:

o (1 5E2) S(1) — S — s ()
Fe(t) (1 L) $S(t) — (M + wi)E()
ME(t) + 2EXEE — (g + w))L(t)
AoL(t) — (As + w3)P(t)
F(x) = | KAP(t) + 81F¢(8) + &2Fn (1) — [As (%)ﬂud F(t) (3.11)
(1= KIASP() — las] M(t)
M (mrreraer ) Frl®) - (61+w6(t))Ff(t)
M (e rsiire ) Fr(t) = (82 + @y (1) Fu (1

Pap — [ws] Mg (t)

The right-hand side of Equation 11 is a continuous local Lipschitz function, so the
uniqueness and local existence of the solution are guaranteed. By computing the Jacobian
matrix of Equation 11, we obtain Equation 12:

x1 0 x O 0 0 0 0 0

x3 x4 0 O 0 0 x5 O 0

Xe X7 X§ 0 0 0 0 0 0

0 0 X9 X10 0 0 0 0 0

| 0 0 0 x11 x12 X13 X14 X15 Xi6
8f o 0 0 0 X17 X18 X19 0 0 0 (3'12)

0 0 0 0 X21 X22 X223 0 X24

0 0 0 0 X25 X26 0 X27 X228

0O 0 0 O 0 0 0 0 xa0
Where: x; = a—%—%—ub Xy = _%: x3 = 1oFs (1— %), x4 =
—TOIS (A + wy), X5 = TS, X6 = (nff;g)z, X7 = A1, xg = 255 — (A4 wa), x9 = Ay,
x10 = —(Az + w3), x11 = KAz, X102 = _1\/}1\1’\1\/}15 — Wy, X13 = %@hs, x14 = 81, X15 = &2,
X16 = My > X7 = (1= K)Ag, x18 = 0, x19 = — lws], x20 = 0, X21 = Mg (%M),
X22 = Ay (%) F, xo3 = —(81 + we), Xo4 =M\ (ﬁ) F, x5 = A4 (%»

X26 = —Aa (ﬁ) F, X7 = —(82 + w7), x28 = W(ll\t[i’\:,v)[s)}les , X30 = —Ws.

The Jacobian matrix 12 was subjected to an equilibrium analysis.

3.4.2. Local Stability Analysis of FCM free Equilibrium Points
Theorem 3.2. The free equilibrium point of FCM Eq is locally asymptotically stable if Ry < 1
and otherwise unstable.

Proof. The local stability analysis of model system 1 can be determined by solving the
Jacobian matrix 12 at the free equilibrium points of FCM (Ey = (Kp(x — 11),0,0,0,0
,0,0,0, ), which yields Equation 13:
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x1 0 x 0 0 0 0 0 O

0 x4 0 O 0 0 x5 0 O

0 x» x¢ O 0 0 0 0 O

0 0 x9 x190 O 0 0 0 0
JelEo=1 0 0 0 x11 x12 %13 X14 x5 0 (3.13)

0 0 0 X17 0 X19 0 0 0

0O 0 0 o0 0 0 x3 0 O

0 0 0 0 xp O 0 0 0

0 0 0 0 xxp9¢ O 0 0 0
Where: x1 = p — &, x = —7Tff££?;f:&) = —Re2E2) ey = (A + wy), x5 =
Knla— ), x7 = A, xg = % — Mgt wy) = BtenlRoma) g =, g =
—(A3 + w3), x11 = KA3, X12 = —Wy, X3 = @, X14 = 81, X15 = 82, X17 = (1 —K)A3,

wg
x19 = — [Ws], X23 = — (81 + we), X25 = A4, X27 = —0, X258 = 0, x29 = 0, x30 = 0.

Matrix 13 is solved using the Wolfram Mathematica software, which yields the eigen-
values shown in Equation 14:

S1 =0
S3=—x+ 1
S4 :—)\1—(,01
—aA; + RoAy — awy + Rowo
S5 = a
S6 =— A3 — w3

(3.14)

1

7 =5 (—w4 — /4857 + wﬁ)
1

Sg :E (—w4 — 1/ 400Ag + wi)

S9g = — W5

S10 = — 01 — wg

The stability of the free equilibrium point of FCM E; is determined by the values of ss
and s3. Since « > i, the value of s3 remains negative. Therefore, the stability of E is
determined by s5, which simplifies to equation 15:

(A2 + w2)(Ro — a)

S5 = (3.15)
a

From Equation 15, the values of the parameters Ay, w,, and a remain positive. As a
result, the stability of the FCM-free equilibrium is determined by the value of the larval
conversion efficiency 0 < a < 1 such that if Ry < a, then s5 becomes negative and the
FCM-free equilibrium is said to be asymptotically stable, otherwise unstable if Ry > a. This
implies that if the population of the susceptible host is small, the conversion efficiency will
also be minimal. Therefore, the growth and survival of FCM depend on the availability of
the susceptible host. ]
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3.4.3. Local Stability Analysis of SIT free Equilibrium Points
The local stability analysis of model system 11 can be established by solving the Jaco-
bian matrix 12 at the free control equilibrium points (E,), which yields Equation 16:

x1 0 x 0 0 0 0 0 0
X3 X4 0 0 0 0 X5 0 0
X6 X7 X8 0 0 0 0 0 0
0 0 X9 X10 0 0 0 0 0
JeflEa=1 0 0 0 x11 x12 0 x4 Xx15 X6 (3.16)
0 0 0 X17 0 X19 0 0 0
0 0 0 0 X21 0 X23 0 X24
0 0 0 0 X25 X26 0 X27  X28
0 0 0 0 X29 0 0 0 X30
Where: x; = oc— 2&;& — aL*&(“}ﬁig;}%s*&L*& — g, X2 = —%, x3 = ToFEE (1 — ET*&),
X4 = —w — (M1 4 w2), x5 = 18, x5 = mfiiéiz)z, X7 =M, Xg = Qiss*i — (M2 + w2),
X9 = A2, X190 = —(A3 + w3), X11 = KA3, X12 = —Ag — Wy, X13 = 0, X154 = 0, X15 = 02, X16 =
M, x17 = (1= k)3, x18 = 0, x19 = Ws, X20 = 0, X21 = Ay, X2 = 0, X23 = — W,
xa1 = Mg (i) F'E, x5 = Ay, x26 = —M4 (e ) B, x27 = —w7, xa8 = 1> X30 = —(ws).

With the values of $*&, E*&, L*& pr& Fr& Mr& Fr&  Matrix 36 is solved using Wolfram
Mathematica software, which produces the eigenvalues as: s; = X9, S = S3 = $4 =
S5 = S6 = X10X14X2X21X4X6 — X10X12X2X23X4X6 — X1X10X14X12X4X8 + X1X10X12X23X4X8 + (X1%10 +
X1X12 + X10X12 — X14X21 + X1X23 + X10X23 + X12X23 + X1X4 + X10X4 + X12X4 + X23X4 — X2Xg +
X1X8 + X10X8 + X12Xg + X23Xg + X4Xg) + (—X1 — X190 — X12 — X23 — X4 — xg). Through back-
substitution, all the eigenvalues are found to be negative. Therefore, the control-free
equilibrium point is a stable equilibrium point. System 1 is said to be locally asymptoti-
cally stable around the control equilibrium points E,.

3.4.4. Local Stability Analysis of Coexistence Equilibrium Points
The local stability analysis of model system 11 can be established by solving the Jaco-
bian matrix 20 at the co-existence equilibrium point, which yields equation 17:

x1 0 x O 0 0 0 0 0
x3 x4 0 0 0 O xs 0 O
X X7 x¢ 0 0 O 0 O O
0 0 X9 X10 0 0 0 0 0
J3=1 0 0 0 x11 X2 X13 X14 X15 Xi6 (3.17)
0 0 0 X17 0 X19 0 0 0
0 0 0 0 X21 X22 X23 0 X24
0 0 0 0 X25  X26 0 X27  X28
0 0 0 0 x99 0 0 0 xa
Where: x; = a— 2?:;& — E,L**&(m(J;f;*;:*)*;)&zS**&L**& — U, X2 = —%, X3 = rF?*& (1 — %*&)

T‘d)F**&S**& & a L**& a S**&
Xy = = = (M W), x5 = TOSTE, X6 = gy, 7 = M, X8 = et —
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A M**&
(A2 +w2), x9 = Az, x10 = —(A3 +w3), x11 = KA3, X2 = —grreg e — Was X13 =

uM**& o o . M**&

MM X14 = 01, X15 = 82, X16 = ~Mypme el

_ _ (.1 s _ M*+& _ M _—

Wws, X0 = ((p«*&)) M , X21 = 7\4 (M**&+HM2*&>J X2 = )\4 <(M**&+HM>§*&)2 F )
M**& & M*&

X3 = —(81 + we), x24 = Mg (—(M**EﬂMz*&)z)F** s X5 = Mg (m5+—M > X26 =

—M\g ((M%M) P& X7 = —(82 4 wy), Xa8 = ”(Mf;i;iwj;i;;w:*&, X30 = —Ws,
With the values of S**&, Ex*& [xx& prxd prade £prr& ok pro& N1+& gre given in Equa-

tion 16. The eigenvalues of matrix 17 in (E3) are found to be: s1 = [—y10Y16Y19Y2Y23Y27Y29Y4Ye +
Y10Y14Y19Y2Y24Y27Y29YaYe + (—Y1 — Y10 — Y12 — Y19 — Y23 — Y27 — Y3oY4 — Ys)l,

82 = 53 = [~Y10Y16 - - - Y4Ysl, 84 = s5 = ¢ = 57 = 83 = S9 = [Y10Y16Y19Y2Y23Y27Y29Y4Ys +
Y10Y14Y19Y2Y24Y27Y29Y4Y6 + Y10Y14Y19Y2Y24Y27Y29Yays). Through back substitution, all
eigenvalues of the coexistence equilibrium point are found to be negative, which shows
that Ej is a stable equilibrium point. Therefore, system 1 is locally asymptotically stable
around the free equilibrium point of the sterile insect technique Ej;.

This implies that when the sterile insect technique is used as a control measure for
FCM, a stable equilibrium point is achieved, provided that all parameters affecting the
basic reproduction number are not affected. However, any change in the parameter value
in Model System 1 may lead to an unstable point in the system that otherwise would be
unstable.

& x17 = (1—K)A3, x19 =

3.5. Global Stability Analysis

Global stability analysis is performed using the Metzler matrix stability method pro-
posed by [13] and the Lyapunov method.

3.5.1. Global Stability Analysis of Eg
Assuming the system is cooperative on R%, growth in any compartment has a posi-
tive impact on growth in all other compartments. The global stability of the equilibrium
without FCM is investigated using the Metzler matrix stability method proposed by [13].
The method of [13] is where system model 11 is written as shown in Equation 18:

X _rx2)
g} (3.18)

Where: X = (S,M;) € IREL denotes non-infectious compartments and Z = (E,L,P,F, M,
F¢, Fn) € ]R7+ denotes infectious pest compartments. Ey = (X*,0) represents the pest
free equilibrium of the system. If this point satisfies the following conditions: (i) for % =
F(X,0), where X* is globally asymptotically stable, (ii) ‘31—% =D,G(X,00Z2—G(X,Z2),G(X,Z) >
0 for all (X, Z) € Q, then we can conclude that E is globally asymptotically stable if The
following Theorem 3 holds:

Theorem 3.3. The equilibrium point £y = (X*,0) of system 18 is globally asymptotically
stable if conditions (i) and (ii) are satisfied, otherwise unstable.
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Proof. Let X=(S§,M;) and Z = (E,L,P,F, M, F¢, F;,) be the new variables and the subsys-
tems of the system model 1. From Equation 28, two vector-valued functions G(X, Z) and
F(X, Z) can be given by Equations 19 and 20:

Fxz) = “ (1 - %) S(t) - Ei(ﬁsL(S) —mS(t) (3.19)
Pqp— wsM(t)

and
Fi(t) (1= 52) oS — M + T E()
ME(t) + 224 — (A + wp)L(1)
ML(t) — (A + w3)P(1)
G(X,Z) = | KAP(t) +81F¢(t) + 52Fn (1) [ (v ) +wa O | (3.20)
(1 AsP() — s
M (rre sy ) Fr(t) = (81 + ws (1) Fe()
M (et ) Fr(t) = (82 + @y (1) Fa(t)

Now, let us consider the reduced system, ‘311( = F(X,0) from condition (i) yields equa-
tion 21:

as _ <1 _ Sm) S(t) — uS(t)
; I\(/ilt Kn (3.21)
at =hqup — wgMs(t)

It is observed that this is an asymptomatic dynamics system, independent of the initial
conditions in Q; therefore, the convergence of the solutions of the reduced system 18 is
global in Q. By computing:

G(X,Z) =D,G(X*,0)—G(X,2)
and showing that
G(X,Z2) >0

Now, let B = D,G(X*,0), which is the Jacobian of G(X, Z) taken in (E,L,P,F, M, F¢, Fn)
and evaluated at (X*,0). Then the matrix B is given by Equation 22:

x1 0 O 0 0 x O
X3 X4 0 0 0 0 0
0 X5 Xg 0 0 0 0
B= 0 0 X7 X8 0 X9  X10 (3.22)
0 0 X11 0 X12 0 0
0 0 0 0 0 x3 O
0 0 0 X14 0 0 X15
Where: X1 = —(7\1 + wl), X2 = —rKh(oc— Hl): X3 = 7\1, X4 = % - (7\2 + wz),
X5 = A2, X6 = —(A3+ ws3), X7 = kA3, X§ = —w4, X9 = 81, X310 = O, x11 = (1 —«JAs,

X12 = —Ws, X13 = — (81 + We), X14 = Ay, X15 = — (02 + wy).
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The value of G(X, Z) is given by Equation 23:

r¢F () (1- 52 (Koo ) = S(1)

(Kn (ex—pq) S
aE’L(t)(er(}l‘(h(cxflul) - m—!—S)

(3.23)

S O O oo

Since Ky > S. It is clear that G(X,Z) > 0 for all (X,Z) € D, then the pest-free
equilibrium will be globally asymptotically stable. It is also important to note that matrix
B is an M-matrix since all off-diagonal elements are nonnegative. Therefore, this proves
that PFE is globally asymptotically stable. O

These results imply that the FCM-free equilibrium will be globally asymptotically sta-
ble. However, whenever the FCM dynamics population changes, the free FCM equilibrium
may not be globally asymptotically stable.

3.5.2. Global Stability Analysis of Eq

The global stability of control free equilibrium points is performed using the Lyapunov
method of stability analysis. By constructing a suitable Lyapunov function, an approach
adopted by [24] is used. Consider the Lyapunov function in Equation 24:

L= Zai(yi—xg&lnyi) (3.24)

Where a; is the constant selected such that a; > 0, y; is the population of the com-
partment ith and yg& is the free equilibrium point of control. Therefore, expanding the
Lyapunov function in Equation 24 in model system 1 at control-free equilibrium points
yields Equation 25:

L=a;(S—S°%InS)+ ap(E —E°*InE) + az(L — L°®InL) + as(P — P°¢InP)

(3.25)
+ a5(F—F°¢InF) + ag(M — M°&€In M) + ay(Fs — F¢€ In Fy)
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Differentiating 24 with respect to time yields equation 26:

dat _ (4 So&\ dS . E°&\ dE , Lo&Y dL . P& dp
dt_al< TS >dt+a2< TE )dt+a3< T >dt+a4< P >dt
Fo&\ dF MO&\ dM Fo&\ dFy
+(15<1— F )dt—l—a6<1— M )dt+a7<1_ Ff)dt
_ So& S(t) ES(t)L(t)
o0&
+ ay 1—EE ) [TFf(t) (1—]5/(;)) S(t)— (M +le1)E(t)]
o&
ra (155 [+ S ot e

[KA3P(t) + 01F¢(t) — [Ag + Tawy] F(t)]

) [(1-— K)AsP(t) — T5(U5M(‘t)]

-1 ) \aFe(t) — (81 + Toas(t)) Fr ()]

(3.26)
Where: S(t) = S°%, E(t) = E°%, L(t) = L°%, P(t) = P&, F(t) = F°&, M(t) = MO, F¢(t) =
Fo&.

Following [26] approach, and assuming that system model 1 is positively invariant,
equation 26 is non-positive. Hence % < OVS,E, L
,P,F,M,F¢ > 0 and is zero when S(t) = S°&, E(t) = E°%,L(t) = L°&,P(t) = P°%, F(t) =
Fo& M(t) = MO%, Fe(t) = Fo&. Therefore, the largest invariant set in
{(So%, Eok, Lok, po& Fo& Mo& Fo&) ¢ D} such that 4k = 0 is the singleton {E;} which
is the control free equilibrium point. According to the invariant principle put forward by
[25], E; is globally asymptotically stable in D, if Ry > 1 the interior of D, otherwise un-
stable.

An important question by entomologists is whether, pest, after a possible outbreak,
will persist and stay and stay in a positive infestation level over time, and whether this
behaviour depends on the initial size of the pest. Mathematically, this is represented by
the global asymptotic stability of the control free equilibrium.

3.5.3. Global Stability Analysis of E;
Theorem 3.4. The sufficient condition for global stability of the model system 1 is that the
coexistence equilibrium point is feasible and has a locally asymptomatic stable solution.

Proof. Global stability of coexistence equilibrium points is constructed using a suitable
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Lyapunov function, an approach adopted by [24]. In this approach, the Lyapunov function
is constructed based on equation 27:

L= Z ai(xqy — x’{*& Inx;) (3.27)

Where q; is the constant selected such that a; > 0, x; is the population of the ith compart-

ment and x;*& is the equilibrium point of co-existence. Therefore, consider the Lyapunov

function in Equation 28:

L=a1(S—S"*¢InS) + ay(E—E**InE) + az(L —L***InL) + ag(P — P**¢InP)
+as(F=F*¢InF) + ag(M — M**InM) + ay(Fs — F*€ In Fy) (3.28)
+as(Fn — 7 InFn) + ag(Ms — M In M)

Differentiating 28 with respect to time yields equation 29:

iL_a 1_5**& is+a 1_E**& ﬁ_f_a 1_[_**& %_{—a 1_])**& @
ac S Jat ' 2 E )at ' ° L )at ™ P ) at

@ at % M ) at Y Fr ) dt
Ffl*& dF, M:*& dM;
+ ag (1 — Fr ) at + a9 (1 — M. m
Srr& S(t) ES(t)L(t)
= 1-— 1——)S(t) - —~Y07r—— t
a1< )M ) (1) - S s )]

*x&
1— E ) [ranf(t) (1 — E/E\t)) S(t)— (A1 + wl)E(t)]

k&
L ) [AlE(t) +a]flsfgs)

et wz)ut)}

|:K7\3P(t) + 61F¢(t) + 02Fn (t) — |:7\4 (M) +T4(,U4] F(t):|

(

(

(

< k&

T g (1 M ) [(1— KIAGP(t) — ws] M(t)

( My

(

(

(3.29)
Where: S(t) = S E(t) = & L(t) = L&, P(t) = P& F(t) = P& M(t) =
M Fe(t) = FS Fu(t) = Fr®, M (t) = M
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Following the approach of [26], it can easily be seen that equation 29 is non-positive.
Hence % < OYS,E L P, F,M, F¢, Fry, Mg, F, > 0 and is zero when S(t) = S**& E(t) =
E**& L(t) = L&, P(t) = P& F(t) = P&, M(t) = M Fe(t) = Fr*& F(t) = B, M (t) =
M:*&, Therefore, the largest invariant set in
{(S*&, Erx&e Lrxe prx&e pro&e Nre& pre& pre& Mrx&) ¢ D) such that % = 0 is the sin-
gleton {E3} which is the the pheromone traps free equilibrium point. According to the
invariant principle put forward by [25], E3 is globally asymptotically stable in D, if Ry < 1
the interior of D, otherwise unstable. According to [25] invariant principle, E3 is globally
asymptotically stable in D if Ry < 1 is the interior of D, otherwise unstable. O

These results imply that the pheromone trap free equilibrium will be globally asymp-
totically stable whenever the basic reproduction number is less than unity. However,
whenever the FCM dynamics population changes and the sterile release rate changes,
the pheromone trap free equilibrium may not be globally asymptotically stable.

The FCM infestation may occur at the least time expected if the FCM was feeding
on other host plants, which may lead to the random distribution of FCM throughout the
host population, a linear relationship between host harvesting and FCM burden may oc-
cur. Thus, for a given pattern of FCM distribution, a particular functional response may
stabilise the dynamics, whereas others may result in instabilities, as in the case of predator-
prey association. As a result, it is worthwhile to conduct a bifurcation analysis to deter-
mine the system’s global stability further.

4. Sensitivity Analysis of the Model

Sensitivity analysis is performed to identify key parameters that can significantly im-
pact the dynamics of the host-FCM interaction model. To determine which key parameters
to consider in the control FCM population. The initial FCM population is directly related
to Ry, and the coexistence of host and FCM is directly related to the equilibria points. To
investigate the potential impact of pheromone traps and sterile insect techniques on the
population of FCM, sensitivity analysis of the basic reproduction number with respect to
pheromone traps and sterile insect technique is carried out.

Sensitivity analysis indices of the basic reproduction number Ry and the coexistence
equilibrium point E5 to the parameter in the model system 4.1.1 are performed following
the method of [7]and [13].

Definition 4.1. The normalized forward-sensitivity index of a variable Ry, that depends
differentiably on parameter, 1 is defined as in equation 30:

YR — 0Ro x b

0w R “4.1)

Where p; represents all the main parameters and

afKp (o — )

R0 = T K — 1) (2 + 02)
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From the definition, the parameters of the basic reproduction number, which are af-
fected by pheromone concentration and sterile insect technique, are &, a, A, and wy, since
they have a direct link to the FCM dynamics. Changes in pheromone concentration and
sterile insect release rate directly affect the magnitude of these parameters. Therefore, the
sensitivity of the pheromone trap and sterile insect release rate with respect to the basic
reproduction number is analysed based on these parameters. To find the sensitivity index
of the harvesting term () we proceed as shown in equation 31:

0Ro g
yRo _ Or0 &
3 0¢& % Ro
_ KaciKh(Oc— H;\) % f ) (4.2)
— a& Ky (x—py
(m+Kp(oe—n1)) (A2 + w2) (m+Ky (oe—p1)) (A2+w2)
=1>0

Since the sensitivity index of £ is positive, its increase increases the basic reproduction
number, leading to more FCM infestation. Therefore, to decrease the value of this param-
eter, the value of pheromone concentration and sterile release rate should be increased. A
plot of the FCM attack rate (¢) against the basic reproduction number is illustrated in Fig-
ure 4. From Figure 4, its seen that an increase in conversion rate leads to a corresponding
increase in the basic reproduction number.

Larval Attack Rate
o o o o
o I 9o p 9 & 9 » ©
- [6,] n (4] w (3] » (4] o
T T T T T T T T
1 1 1 1 1 1 1 1

o

=)
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Basic Reproduction Number (R0)

o

Figure 4: Attack Rate against Basic Reproduction Number R,

To find the sensitivity index of conversion rate (a) we proceed as shown in equation
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32:
Ro % X =
a da R
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Since the sensitivity index of a is positive, its increase leads also to increase in the basic
reproduction number which further leads to more FCM infestation. A plot of FCM conver-
sion rate against the basic reproduction number is illustrated in Figure 5. From the Figure
its observed that an increase in conversion rate lead to a corresponding increase in the
basic reproduction number.
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Figure 5: FCM Conversion Rate against Basic Reproduction Number R,

A similar procedure can be used to calculate the sensitivity indices of other parameters
around the basic reproduction number, is summarised in Table 2:

Table 1: Sign of Sensitivity Index

Parameter Sensitivity Index | Value
o Positive 0.0001921737
L Negative -0.0000043
a Positive 1.0
Positive 1.0
Ky Positive 0.000189
m Negative -0.0003786
A2 Negative -0.066217
wop Negative -0.96
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4.1. Interpretation of Sensitivity Indices

The sensitivity indices of the basic reproduction number Ry with respect to the main
parameters are illustrated in Table 5. Parameters with positive indices (Ky, a, ¢) have a
greater impact on FCM infestation in the susceptible host population, since the increase
in their values increases R, in the model system 1. On the other hand, parameters whose
sensitivity index is negative (m, 1, Ay, wy) have the effect of minimising the burden of
FCM infestation in the susceptible host population. As their values increase, the basic
reproduction number decreases, which minimises the pest burden in the susceptible host
population. In this study, pheromone traps and sterile insect techniques can minimise
the values of parameters whose sensitivity indices are positive. Therefore, with sensitivity
analysis, you can obtain information on the appropriate intervention strategies to prevent
and control the spread of the pest in the population.

4.2. Numerical Simulations

Numerical simulations of the 1 model system are carried out to illustrate some of the
analytical results of the study system and to understand the effect of the sterile insect
technique and pheromone traps on the population of susceptible FCM hosts. A set of
reasonable parameter values was used as given in Table 1. These parameter values were
obtained from the literature and some of them were assumed following reasonable ecolog-
ical observations. In this study, S(t) = 100, E(t) = 0,L(t) =0,P(t) = 0,F(0) =20,M(0) =
20,F¢(0) = 0,F, = 0, M = 0, were considered as the initial values for the simulation of
the model system 1 with a time range between 0 and 100 days, in addition to the param-
eter values in Table 1. Numerical simulations of the effect of FCM on the susceptible host
without control and the impact of the sterile insect technique on the FCM and susceptible
host populations are carried out 0 < t < 100 in days in Matlab software and presented in
graphical form.

4.2.1. Effect of the Absence of FCM on Susceptible Host

The effect of FCM on the susceptible host can be analysed by first evaluating the growth
pattern of the susceptible host in the absence of the false codling moth, then introducing
FCM on the farm and evaluating the growth pattern of the susceptible host in the presence
of FCM. In the absence of FCM, the susceptible host population grows logistically and lev-
els off at carrying capacity. The absence of FCM in the host population can be numerically
illustrated by setting the FCM compartments and the sterile insect compartment in model
system 1 to zero and using the other remaining parameters as indicated in Table 1.

Figure 6 shows a graph of susceptible host and FCM populations against time when
there is no harvest on the farm such that p; = 0.0. The figure shows that the susceptible
host population increases logistically to its carrying capacity (Ky, = 1000) while the FCM
population remains zero throughout. This shows that in the absence of FCM, the farmer
will achieve high crop yields. Therefore, to improve crop production, an attempt must be
made to ensure that the false codling moth is eliminated on the farm.
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Figure 6: A plot of susceptible host and FCM populations in time with pu; = 0.0

In this study, the harvesting term represents other ways susceptible hosts can be re-
moved, other than through FCM inversion. When the harvest term is extended to such
that py = 0.2, the susceptible host population continues to grow logistically, but does not
reach the host’s carrying capacity, while the FCM population remains constant through-
out, as illustrated in Figure 7. Therefore, when 1 increases, susceptible hosts do not reach
their carrying capacity.
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Figure 7: A Graph of the Susceptible Host against Time with pu; = 0.2
Therefore, in the absence of FCM in the field with zero harvesting term, farmers would

realise maximum crop yields. Therefore, it is necessary to completely eliminate FCM on
the farm.
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4.2.2. The Impact of FCM on the Host

The effect of FCM on the susceptible host is determined by performing numerical sim-
ulations of the host-pest interaction model with the parameters in the sterile insect com-
partment set to zero, that is, = 0, wg = 0 and simulating the model with the parameter
values in Table 3. Figures 8, 9, and 10 show a graphic illustration of the impact of FCM on
the susceptible host without intervention. Figure 8 shows a 30-day graph of susceptible
hosts versus time. According to Figure 8, the susceptible population expands logistically
from 100 to 428 people. Because the carrying capacity of the susceptible host is set at
1000, the presence of the FCM pest causes the susceptible host to grow below its carrying
capacity. Due to the effect of FCM on the susceptible host population, when the initial
population increases to 500, the susceptible host population drops exponentially and then
levels off at 428.
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Figure 8: A plot of a susceptible host against time without control

Figure 9 shows a graph of the total population of FCM overtime for 30 days. According
to Figure 9, the population of FCM first increases dramatically from 1000 to a maximum
value, then gradually decreases, then increases again, and drops slightly below 1000 after
100 days. The first increase is due to the increased availability of food from FCM pests. As
time passes, the number of susceptible hosts available begins to decline, resulting in a de-
crease. As more susceptible hosts are introduced into the population and the polyphagous
nature of FCM, FCM naturally coexists near 1000.
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Figure 9: A plot of the total population of FCM with time in the presence of FCM without control

Figure 10 represents a graph of a susceptible host with time in the presence of FCM in
the absence of any control when « = 1.2 while maintaining the other parameters in Table
1 constant. Figure 9 shows that the number of susceptible hosts decreases with time from
100 to 0. This shows that, in the absence of any control measure of FCM, the FCM feeds
on the available hosts until the population is completely depleted.
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Figure 10: A plot of the susceptible host with time in the presence of the FCM without control

The presence of FCM in the population leads to a decrease in the susceptible host
population. As the host population reduces the FCM in the larval stage, its population also
declines, as illustrated by the numerical simulation in Figure 9. Therefore, the presence
of FCM on the farm has more significant economic effects and reduces crop yields. These
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findings are in agreement with those of [40]. Therefore, it is essential to employ control
measures to eliminate FCM.

4.2.3. Impact of Sterile Insect on FCM Control

To explore the impact of sterilised insects on the FCM population, the system model 1
is numerically analysed with the parameter values in Figure 1. Figure 11 shows a graph
of the population of FCM over time, with a sterile release rate of 1\p = 100 in 20 days. In
Figure 10, the number of FCM first decreases, then starts to increase to about 450, then
gradually drops to zero as time increases. This indicates the effectiveness of sterile insect
release as an FCM biological control method.
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Figure 11: A plot of FCM Population against Time (Days)

Figure 12 illustrates a graph of the sterile insect population compared to the FCM
population for 20 days. In Figure 12, it is observed that the number of FCM decreases
slightly first, then increases to approximately 450, then gradually decreases to zero, when
the sterile insect is approximately 120. Therefore, sterile insects help reduce the number
of FCM by making fertile females infertile through mating and only capable of producing
infertile eggs, thus helping to reduce the population of FCM.
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Figure 12: A plot of sterile insect release against the FCM population

The impact of sterile insect release on the susceptible host population is obtained by
setting the pheromone compartment in model system 1 to zero that is setting v =0,v = 0,
then simulating the model using same initial condition for a period between 0 to 100 days
at 20°C temperature. The impact of sterile insect on the host and FCM is illustrated in
Figures 13, 14, 15 and 16. Figure 13 shows a plot of the number of sterile against time
within a period of 10 days, 30 days and 100 days, with initial value of sterile insect set
at zero and release rate \p = 100. From the graph its observed that the number of sterile
insect insect increase gradually up to a maximum value with time and follows the same
trajectory at all times. Any further increase in time does not require additional increase in
the sterile insect.
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Figure 13: A plot of Number of Sterile Insect Release with Time

Figure 14 shows a plot of Susceptible host against sterile insect as a control measure of
FCM,with the initial number of sterile insect set at zero and the release rate per day varied
from 5, 10, and 100 sterile release per day. The susceptible host carrying capacity is set
constant at Ky, = 1000. From the graph its evident that the minimum number of sterile
release rate that would bring the susceptible host to its carrying capacity is approximately
5 sterile insect per day any further increase in the sterile insect would have no effect on
the yields of susceptible host. This shows that sterile insect techniques helps control the
FCM population from the farm hence leading to high yields.
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Figure 15 shows a plot of the total FCM population against the number of sterile insect
released in the field under various release rate per day within a period of 30 days while
keeping other parameters as indicated in Table 1. From the graph its observed that the
population of FCM first increases from the initial population to a maximum and gradually
drops to zero. The 10 sterile insect release per day is found to be more effect than 100
sterile insect release per day. This shows the impact of sterile insect on the reduction of
the population of FCM as a biological control measure.

9000

—p=10
$=50 |7
=100
7000 4

8000

on

-2 6000 1

5000 b

4000 1

Total FCM Populat

3000 1

2000 b

1000 |- 4

1 I

0 20 40 60 80 100 120 140 160
Sterile Insect

Figure 15: A plot of Total FCM Population against Sterile Insect Release in the absence of Pheromone Traps

Figure 16 shows a plot of a dult FCM population against the sterile insect, with the
sterile release rate {» = 100 within a period of 30 days. From the Figure the number of a
dult FCM decreases from the initial values of 100 in each compartment to 0. This indicates
the effectiveness of sterile insect release as an FCM biological control method.
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Figure 16: A plot Adult FCM Population against Sterile Insect Release

Figure 17 illustrate a plot of fertilized fertile female population against sterile insect
under different release rates that is when { = 100, 1 = 50 and { = 10. From the
Figure it is observed that the number of fertilized fertile female decreases from the initial
population of 100 gradually to near zero with the increase in sterile insect and remain
constant at near zero. Higher release rate does not provide a faster control as illustrated
in Figure 10. Sterile insect therefore help in reducing the number of fertilized fertile
female by making the fertile female infertile through mating and only able to produce
infertile eggs, hence helps in reducing the population of FCM.
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The impact of sterile insect release on the susceptible host population is obtained by
setting the pheromone compartment in model system 1 to zero, that is, setting nu =
0,v =0, then simulating the model for a period between 0 and 100 days at a temperature
of 200C. The impact of a sterile insect on the host is illustrated in Figures 18 and 19:
Figure 18 shows a graph of the number of susceptible hosts over time in 10 days, 20 days,
with the sterile insect technique as the FCM control agent. According to Figure 18, the
population of susceptible hosts gradually increases to carry capacity.

1000

700 1

600 1

500 1

400 + 1

300 1

Susceptible Host Population

200 1

100 . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20
Sterile Insect Population

Figure 18: A plot of a susceptible host with time in the SIT

Figure 19 illustrates a graph of susceptible hosts versus sterile insects as an FCM con-
trol measure, with the initial number of sterile insects set to zero and the release rate per
day at 100. The carrying capacity of the susceptible host is set at Ky, = 1000. In Figure
19, it is observed that the population of susceptible hosts increases in carrying capacity as
the population of sterile insects increases. Any further increase in the sterile insect would
not affect the yields of the susceptible host. This shows that sterile insect techniques help
increase crop yields on the farm.
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Figure 19: A plot of the susceptible host against the sterile insect population

Insect populations can be controlled by the release of large numbers of sterile males.
Therefore, if a fertile female mates with a sterile male, the female will lay non-hatching
eggs. Analysis of the host-parasite interaction model in the presence of sterile insects
shows that to reduce FCM infestation, sterile insects should be released into the popula-
tion within the values of the threshold parameter. The value of the practical parameter of
the sterile insect release rate reduces the larval conversion rate and its attack rate, which,
in turn, reduces the value of the basic reproduction number to less than unity, and thus is
very effective in controlling the FCM infestation. When many sterile males are released in
the field, the local population of FCM tends to decline or disappears with time. Numeri-
cal simulation showed that in the presence of SIT, FCM control is an effective biological
method of controlling FCM infestation in the susceptible host population.

The study revealed that the control of FCM using the sterile insect method is effective,
provided that the number of sterile releases is above the threshold value. Furthermore, the
study reveals that the success of sterile release depends on the entomological parameters
of the FCM, as well as the parameters of the sterile male, which determine the threshold
value.

5. Conclusion

Pest control has advanced significantly in recent years as it has become clear that pesti-
cides alone are frequently insufficient, if not harmful, for many pest problems, particularly
in FCM. An adequate understanding of the biological dynamics associated with pest con-
trol techniques is becoming increasingly clear in any pest control programme.
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In this study, a deterministic mathematical model of sterile insect technique is devel-
oped for control of false codling moth. Although some researchers, such as [3] and [2],
have developed biological pest control models, none of these models have taken into ac-
count the host compartment. Furthermore, most of these models have focused on general
pest control rather than specific pest species, and some of the models have only captured
pest dynamics while ignoring crop population, which has a significant impact on crop and
pest interactions. Keeping pest densities below economic thresholds is one of the most
important aspects of pest control. These levels are closely related to the crop population’s
dynamic evolution. As a result, we incorporated the dynamic of susceptible host popula-
tion, FCM age-structured compartments into model system 1.

We carefully examined the model and determined three ecological equilibrium points
for the system model. I pest-free equilibrium point (Eg); ii) co-existence equilibrium point
(E1); and iii) host-free equilibrium point (E,). Due to its triviality, the host-free equilib-
rium has not been subjected to stability analysis. The primary objective of this study is to
determine the values of the threshold parameter of the sterile release rate that will cause
the extinction of FCM, thus ensuring the survival of susceptible hosts.

Based on our analytical and numerical analysis of the system model, we determined a
critical value of the sterile insect release rate, beyond which the FCM will become extinct.
We also validated this discovery using numerical simulation. The model analysis revealed
that there is a domain in which the model is well posed entomologically and mathemati-
cally. The system’s basic reproduction numbers were calculated using the next-generation
matrix. When a critical release value of the sterile release rate is met, the numerical sim-
ulation of the model shows that sterile release is an effective way to control the FCM
population.
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