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Abstract

In this paper, we give a detailed survey on characterization of orthogonality of elementary operators in
normed spaces particularly in the space of norm-attainable operators. In particular, we consider these opera-
tors when they are finite and unveil new conditions which are necessary and sufficient for their orthogonality.
Lastly, we characterize Birkhoff-James orthogonality for this class of operators. We have shown that finite
elementary operators satisfy orthogonality in the sense of Birkhoff-James if they are bounded, isometric and
normal.
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1. Introduction

Studies involving operators and mathematical models (see [1],[2], [3] and the references
therein) have been studied by many researchers with a lot of results obtained. In [4] the
authors described Fractal-Fractional Differential Equations through giving approximations
using numerical inverse Laplace transforms while the works of [5] and [6] studied and
gave a mathematical model on Integer and Fractional Order for COVID-19. Most recently,
the authors in [7], [8] and [9] gave results involving mathematical model of cutaneous
leishmaniasis disease with inputs on how it can be treated. Orthogonality of operators in
normed spaces has also attracted the attention of many mathematicians for a very long
period of time and it still remains interesting (see [10], [11], [12], [13] and [14]). The
usual definition of orthogonality of vectors of a metric space is that q⊥h [15] if and only if
the inner product ⟨q,h⟩ = 0. Orthogonality in any normed linear space can not be defined
in the same way of an inner product space because a normed space is not always an inner
product space [16]. Hence, since 1934 various concepts of orthogonality in Hilbert spaces
have been studied and introduced by [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26] and [27] among others. These studies lead to several versions of orthogonality such
as:
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(i). Rorberts orthogonality(1934): ∥j− γk∥ = ∥j+ γk∥, for all γ ∈ R.
(ii). Birkhoff orthogonality(1935): ∥j∥ ⩽ ∥j+ γk∥, for all γ ∈ R.

(iii). Isosceles orthogonality(1945): ∥j− k∥ = ∥j+ k∥.
(iv). Pythagorean orthogonality(1945): ∥j− k∥2 = ∥j∥2 + ∥k∥2.
(v). Singer orthogonality(1957): j = 0 or k = 0 or ∥ j

∥j∥ + k
∥k∥∥ = ∥ j

∥j∥ − k
∥k∥∥.

(vi). a-isosceles orthogonality(1988): ∥j− ak∥ = ∥j+ ak∥.
(vii). a-pythagorean orthogonality(1988): ∥j− ak∥2 = ∥j∥2 + a2∥k∥2.

(viii). Carlsson(1961):
∑m

k=1 ak∥bkx + cky∥2 = 0 where m ⩾ 2 and ak,bk, ck ∈
R,

∑m
k=1 akbkck ̸= 0,

∑m
k=1 akb

2
k =

∑m
k=1 akc

2
k = 0.

(ix). ab(1978): ∥ap+ bq∥2 + ∥p+ q∥2 = ∥ap+ q∥2 + ∥p+ bq∥2.
(x). a(1983): (1 + a2)∥q+ r∥2 = ∥aq+ r∥2 + ∥q+ ar∥2.

(xi). U-isosceles(1957): either ∥q∥∥r∥ = 0, or ∥q∥−1q is isosceles-orthogonal to ∥r∥−1r.
(xii). U-pythagorean(1986): either ∥q∥∥r∥ = 0, or ∥q∥−1q is pythagorean-orthogonal to

∥r∥−1r.
(xiii). Area(1986): either ∥q∥∥r∥ = 0 , or they are linearly independent and such that

q, r,−q,−r cut the unit ball of their plane independently in four equivalent parts.
(xiv). Diminnie(1983): sup{q(r)s(t) − q(t)s(r) : q, s ∈ S ′}=∥r∥∥t∥, S ′ representing the

unit sphere of the space of linear functionals of E.

A bounded linear operator Q on a Hilbert space H is finite if ∥QX−XQ− I∥ ⩾ 1 for each
X ∈ L(H) [28]. Results of [29] showed that the algebra of finite operators involves normal
operators, operators that are closed, operators with a uniformly continuous summand, and
the Banach algebra with an involution satisfying the properties of adjoint originating from
each and every member. The results implied the group of self-commutators is uniformly
closed and that the class of operators that have a reducing subspace of finite dimension is
non-uniformly dense as seen in [30], [31], [32], [33] and [34]. In [35], the study gave a
new class of finite operators using the knowledge of the reducing approximate spectrum
of an operator. In this case the concept of completely finite operators was introduced.
Those are operators A such that AE is finite for any orthogonal reducing subspace E of
A as asserted by [36] and [37] and [38]. The work of [39] and [40] improved the Du
Hong-Ke inequality to ∥QZQ− Z+ J∥ ⩾ ∥Z∥ for all operators Z. Indeed, it was proved
that the Du Hong-Ke inequality is valid for unitary invariant norms and it was shown that
the Du Hong-Ke inequality is equivalent to the Anderson inequality [41]. The research in
[42] introduced another group "class A" provided by operator inequalities that involves
the group of paranormal operators and the group of log-hyponormal operators. It turned
out in [43] that their results contained another proof of Ando’s results in which every
log-hyponormal operator is paranormal. New groups of operators similar to class A oper-
ators and paranormal operators were also introduced in [44], [45], [46], [47], [48], [49]
and [50]. The author in [51] gave a group of finite operators of the form S+G whereby
S ∈ L(Z) and G is compact whereby it was proved that wo(δS,P) = coδ(δS,P), where
wo(δS,P), coδ(δS,P) denote respectively the numerical range of δS,P and the convex hull
of δ(δS,P) (the spectrum of δS,P) for certain operators S,P ∈ L(Z), δS,P is the ant operator
on L(Z) defined by δS,P = SZ− ZP Z ∈ L(Z). In [52] the researcher characterized the
operators T ∈ L(H) and proved the range-kernel orthogonality results for the operators
Q,R ∈ L(H) that are non-normal in terms of Birkoff-James and [53] also introduced an-
other notion to characterize Anderson’s theorem that is independent of normality through
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the Putnam-Fuglede property [54]. In [55], they gave results on orthogonality of domi-
nant operators and log-hyponormal or p-hyponormal operators and studied orthogonality
of certain operators. The main goal was to determine the range-kernel orthogonality re-
sults of δS,R for some operators [56]. In [57] they also proved that the range of δS,R
is orthogonal to the nullspace of δA,B when B∗ and A is dominant is log-hyponormal or
p-hyponormal. In [58] they proved that paranormal operators are finite and presented
some generalized finite operators. An extension of inequality ∥I−AX−XA∥ ⩾ 1 was also
given in [59]-[62]. In [63] they presented some properties of finite operators and gave
some groups of operators which are in the group of finite operators and found for which
condition A+W is a finite operator in L(H⊕H). Moreover, [64], [65], [66], [67], [68]
and [69] presented another set of finite operators which involves the set of paranormal
operators and proved that the range and null space of δY,Z are orthogonal for a group of
operators involving the group of normal operators while [70], [71], [72] and [73] proved
that a paranormal operator is finite and presented properties of finite operators as seen
in [74] and [75]. Kapoor and Jagadish Prasad [46] characterized inner product spaces
and provided simple results of characterizations same as the existing ones. Also, it was
shown that Isosceles orthogonality is unique provided the space is strictly convex and that
Pythagorean orthogonality is unique in a normed linear space. Bhatia and Semrl [20]
showed that if Q and F are matrices such that ∥Q+ zF∥ ⩾ ∥Q∥ for all complex numbers z,
then in this case Q is orthogonal to F. Important properties for this kind of orthogonality
were fund to hold and some characterizations and generalizations were also obtained. In
normed spaces, both pythagorean and Isosceles orthogonalities have been discussed and it
was found that the homogeneity property holds for the orthogonalities in an inner product
space. Koldobsky [42] showed that a bounded linear operator G : Y → Y is orthogonal
provided that there is a product G and a positive constant. The work of [8] studied geo-
metric properties defined in Banach spaces of an orthogonality relation and based on the
property of right angles. Jacek [40] defined an approximate Birkhofff orthogonality rela-
tion in normed spaces and compared it with that introduced by Dragomir and established
few characteristics of approximate Birkhofff orthogonality. In this case, it was shown that
approximate Birkhofff orthogonality in smooth space and from the semi-inner product is
equivalent to approximate orthogonality. In [28] Dragoljub introduced ψ-Gateaux deriva-
tive for operators to be orthogonal to the operator in both spaces C1 and C∞ (nuclear
and compact operators on a Hilbert spaces). Further, Dragoljub [28] applied these results
to prove that there exists a normal derivation δA such that ranδA ⊕ kerδA ̸= C1 and a
related result concerning C∞. Fathi [35] adopted the notion of orthogonality and estab-
lished a characterization for orthogonality in the spaces Lps (C), 1 ⩽ P < ∞ and denoted
L(Q,Z) as the group of linear transformations from the normed space Q to the Banach
space Z. For the Hilbert spaces Q and Z it was shown that the group of compact operators
in L(Q,Z) is the closure L(Q,Z) of the algebra of finite-rank one operators. That gave a
more efficient characterization of compact operators. Debmalya [30] found a condition for
the existence of conjugate diameters through the points e1, e2 ∈ Sj in a real 2-dimensional
strict convex space. For a real strictly convex smooth space of finite dimension the con-
cept of generalized conjugate diameters was introduced. Madjid and Mohammad [51]
introduced the notion of orthogonality constant mappings in isosceles orthogonal spaces
and established stability of orthogonal constant mappings and the stability of periderized
quadratic equation q(r+ s) + h(r+ s) = g(r) + g(s) was studied. They also dealt with
isosceles orthogonality and in their case a normed linear space Z given that the isosceles
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orthogonality was referred as an isosceles orthogonal space. Moreover, they investigated
some properties of the General orthogonality in Banach spaces, and obtained some results
of general orthogonality in Banach spaces similar to orthogonality of Hilbert spaces. The
relation between this concept in smooth spaces and sense of Birkhoff-James was also con-
sidered. In normed spaces, Jacek [39] considered a class of linear mappings preserving
this relation through Birkhoff-James orthogonality. Some related stability problems were
stated. In [21] showed that the linear mapping from a normed space Q to a normed
space R is isosceles orthogonal given that it is an isometric scalar multiple. In normed
spaces, it was shown that the concept of distance that preserve maps originated from
the Mazur-Uham theorem. Since Birkhoff-Orthogonality is homogenous and not symmet-
ric whereby Isosceles orthogonality is symmetric and not homogenous, that showed that
the two types of orthogonality have different properties in linear normed spaces. In in-
ner product spaces, one could easily yield the concepts of orthogonality that yield the
usual orthogonality. Precisely, the orthogonalities coincide provided in an inner product
space. Therefore they might have been referred as natural extension of orthogonality
to normed spaces. Further, the author investigated that an orthogonal linear map in an
inner product space is necessary an isometric scalar multiple, whereby a mapping Q pre-
serves orthogonality provided that p is orthogonal to s means that Qp is orthogonal to
Qs. The study of [12] obtained the required condition for completely continuous linear
operator T to be orthogonal to another completely continuous linear operator A in the
sense of James. Also it was shown that if T is orthogonal to A and 0 ̸∈ σap(A) then
sup{|(Tu, v)| = ∥u∥ = 1 and (Au, v) = 0}. It was proved that the complex scalar λ0 is
characterized by the fact that there exist {xn}, ∥xn∥ = 1 such that ((T − λoA)xn ,Axn) → 0
and ∥(T − λ0A)xn∥ → ∥T − λ0A∥. Dragomir and Kikianty [29] introduced types of or-
thogonality in terms of 2-HH norms and the properties for those orthogonalities were
determined. Inner product spaces and strictly convex spaces were also characterized.
They presented two new definition of orthogonality types. One was related to proximity
in Banach spaces and other related to contractive projections. The relation between the
two types was studied and basic properties of each type were presented. The reflection of
such orthogonalities to compact operators was discussed. Cuixia and Senlin [25] studied
homogeneity in normed linear spaces of isosceles orthogonality and that was an impor-
tant notion of orthogonality from the two view point. They related homogeneous isosceles
orthogonality to other types of orthogonality which include vectors with isometric reflec-
tion and vectors with l2-summand and it was shown that a Banach space Z is a Hilbert
space provided that the interior of the group of isosceles orthogonality with homogeneity
property in the unit sphere of Z is not empty. Moreover, a geometric constant NHZ to
determine the non-homogeneity of isosceles orthogonality was introduced. It was shown
that 0 ⩽ NH ⩽ 2 NHZ = 0 provided Z is a Hilbert space and NHZ = 2 given that Z is not
a square uniformly. Salah and Hacene [63] minimized the C∞-norm from L(H) to C∞ of
suitable affine mappings through convex and differentiable analysis as studied in operator
theory. The mappings considered generally elementary operator especially the general-
ized derivations that were the most important. As a consequence, global minima in terms
of orthogonality was characterized in Banach spaces. Ali Zamani and Mohammad [10]
gave results on approximate Roberts orthogonality and approximate Birkhoff orthogonal-
ity and the properties of approximate Roberts orthogonality were also studied. Moreover,
the set of linear mappings that preserve approximate Roberts orthogonality of type ε ⊥ R.
It was shown that an ε-isometric scalar multiple is a mapping that preserves approximate
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Roberts orthogonality. Justyna [41] showed how different types of orthogonality have
been described in functional equationsand introduced aspects of orthogonality, functional
equations examples were given for vectors that are orthogonal. Some of their results
and some applications were shown. Then, the factors affecting stability of some of func-
tional equations were discussed considering different notions. Also, the author mentioned
the orthogonality equation and the challenge that preserve orthogonality. Finally, some
open problems regarding those topics were stated. Pawel [56] introduced an approximate
and exact orthogonality relation and considered algebra of linear mappings that preserve
approximate orthogonality. The author also studied the property of a linear mapping re-
serving the B-orthogonality and it was proved to be equivalent to the p,p+-orthogonality
(although these orthogonalities need not be equivalent). However, it was shown [68]
that every map that is linear with approximate orthogonality is a isometric scalar mul-
tiple. It was shown that a linear map which preserve Birkhoff-James orthogonality is a
isometric scalar multiple. Later, [62] extended this study and showed that approximate
semi-orthogonality and approximate p+-orthogonality are not comparable unless it is for
a smooth normed space. Consequently smooth spaces were characterized in terms of ap-
proximate orthogonality. In [37] the notion of approximate Roberts orthogonality set and
investigated the properties of the given sets was introduced. To add, they introduced the
concept of approximate a-isosceles orthogonality and considered a group of transforma-
tions with approximate a-isosceles orthogonality. Chaoqun and Fangyan [26] investigated
maps between normed spaces with the orthogonality given by the norm derivative. Those
maps were proved to be an isometric scalar multiple. Bhuwan [21] studied two new
types of orthogonality from generalized carlsson orthogonality and some properties of
orthogonality in Banach spaces were verified as Best implied Birkhoff orthogonality and
Birkhoff orthogonality implied Best approximation. It was also shown that Pythagorean
orthogonality implies Best approximation. In [38] introduced new geometric constants
that differentiates Roberts orthogonality and Birkhoff orthogonality in normed spaces by
characterizing Roberts orthogonality in two different ways through bisectors of two points
and using certain linear transformations. The main objective was to present two new
characterizations of Rorbert orthogonality. One of them was related to segments whose
bisectors contain lines, and the other one associated this type of orthogonality to certain
symmetries of the unit circle. In [70] the authors studied geometrical structure of bisectors
in normal planes and defined constant Cs, which quantifies the maximum symmetry of
the unit circle regarding directions which are Birkhoff orthogonal. From a geometric point
of view [34] studied two types of approximate Birkhoff-James othogonality in a normed
space, and characterized them in the sense of normal cones. The concept of normal cones
was characterized and related to approximate Birkhoff-James orthogonality in a Banach
space of dimension 2 was explored. Uniqueness theorem was obtained for approximate
Birkhoff-James orthogonality in a normed space. Their main aim was to study two dif-
ferent approximation of Birkhoff-James orthogonality, to have a good understanding of
the properties of normed spaces. Among other things they exhibited that the two types
of approximate Birkhoff-James orthogonality have a close connection with normal cones
in a normed space. Thomas [73] combined functional analytic and geometric view points
on approximate Birkhoff orthogonality in generalized minkowskis spaces which are finite
dimensional vector spaces endowed with a gauge. That was the first approach in those
spaces. In a normed space X, [42] related strict convexity to orthogonality of operators
in terms of Birkhoff-James in K(X), the space of all completely continuous operators on
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X. It was shown that a real reflexive Banach space Z is strictly convex if for Q,R ∈ K(Z),
Q ⊥B R ⇒ Q ⊥SB Q or Rz = 0 for some x ∈ Sz with ∥Qz∥ = ∥Q∥, Q ∈ K(Z). It
was shown that if Z is a real Hilbert space of infinite dimension then for every R ∈ L(Z)
R ⊥B Q ⇒ Q ⊥B R if Q is the zero operator. It was then proved that R ⊥B Q ⇒ Q ⊥B R

for a real Hilbert space Z, Q ⊥B R ⇒ R ⊥B Q for every R ∈ L(Z) if Q is the zero opera-
tor. Debmalya [30] studied Birkhoff-James orthogonality defined on a real Banach space
of finite dimension for bounded linear operators. The main reason for the study was in
two ways, to determine Birkhoff-James orthogonality of linear transformations on a real
Banach space of finite dimension and to characterize the symmetric properties of Birkhoff-
James orthogonality of linear transformations defined on Z. Considering the obtained
results,the author also studied the left symmetric properties of Birkhoff-James orthogo-
nality of linear operators defined on L(l2p) (p ⩾ 2. Letting F, ∥.∥ to be a Banach space of
finite dimension and GF = f ∈ F : ∥f∥ ⩽ 1 and GF = f ∈ F : ∥f∥ = 1 to be the unit ball
and the unit sphere of the Banach space defined by the usual operator norm respectively.
Further, the author introduced a particular notion motivated by geometric observations to
determine Birkhoff-James orthogonality of vector space homomorphism for j,k in a vector
space Z of which a norm is defined on a real Banach space of finite dimension, k ∈ Z+

if ∥j+ λk∥ = ∥j∥ for every λ ⩾ 0, also k ∈ Z− if ∥j+ λk∥ = ∥j∥ for every λ ⩾ 0. The
symmetric property of Birkhoff-James orthogonality of linear transformations on a real
complete vector space Z on which a norm of finite dimension is defined was considered.
So,the author considered this property in Banach spaces and proved some results similar
to the symmetric property of of linear transformations on a real complete vector space Z
on which a norm of finite dimension is defined. It was shown that there is nonzero liner
operators Q ∈ L(Z) such that Q is left symmetric in L(Z). Lastly, using some of the results
obtained, the study proved that Q ∈ L2

r r ⩾ 2, r ̸= 0 is left symmetric given that Q is the
zero operator. It was proved that Q ∈ L(l2r) (r ⩾ 2, r ̸= ∞) is left symmetric in relation
to Birkhoff-James orthogonality given that Q is the zero operator. Lastly, the author con-
cluded that the result holds for a strictly convex of any finite dimension and smooth real
Banach spaces lnr (r > 2, r ̸= ∞). It had been shown that Q ⊥B G ⇒ G ⊥B Q for all
operators G on (Rn, ∥.∥1) given that Q obtains a norm at the extreme point, image that
is left symmetric point of (Rn, ∥.∥1) and images of other extreme points are zero. It was
also proved that G ⊥B Q ⇒ Q ⊥B G for all operators G provided that Q obtains norm
the extreme points given that the images of extreme points are scalar multiples of extreme
points. A necessary condition was obtained for an operator Q to be left symmetric. It was
proved that Q = qij is right symmetric given that for every i ∈ {1, 2, ...} exactly one term
qi1,qi2...qin is non-zero and of the same magnitude proved that Q is a left symmetric
provided Q is the zero operator when the dimension is more than two. It was also proved
that if Q is a linear operator (R2, ∥.∥1) then Q is left symmetric given that Q attains
norms at only one extreme point say e,Qe is symmetric and the other extreme point is
zero. While Birkhoff-James orthogonality was characterized for bounded linear operators
defined on a Hilbert space or a finite dimensional Banach space, the problem of of char-
acterizing Birkhoff-James orthogonality on normed linear spaces of infinite dimension for
linear mappings that are bounded remained unsolved. Motivated by the result on rotund
bounded linear mappings, Birkhoff-James orthogonality of rotund points in the space of
bounded linear operators was obtained. In order to obtain the desired characterization
for rotund points and for general bounded linear operators. Moreover, these researchers
introduced a new definition which was essentially geometric in nature and hence in this
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manner a Birkhoff-James orthogonality for linear operators that are bounded of general
normed spaces was characterized. ϵ-orthogonality was decomposed to completely char-
acterize bounded linear mappings that are bounded in the sense of Birkhoff-James. As a
consequence, Birkhoff James orthogonality on a real normed linear space for linear func-
tionals that are bounded was characterized provided the dual space is strictly convex. The
authors required conditions for smoothness of linear that are bounded on a normed linear
space of infinite dimension was provided. In [50] the wresearch characterized Birkhoff-
James orthogonality of bounded linear mappings on complex complete vectors spaces on
which a norm is defined and obtained a complete characterization of the same. By means
of introducing new definitions, it was illustrated that it is possible in the complex spaces, to
introduce orthogonality of linear mappings similar to the real paces. Furthermore, earlier
operator theoretic characterization of Birkhoff-James orthogonality in the real case could
be obtained as simple corollaries to their present study. In fact, Birkhoff-James orthogo-
nality of completely continuous operators was characterized in the complex case in order
to distinguish the complex case from the real case. The left symmetric linear operators on
complex two-dimensional lp space if and only if J is the zero operator was also studied.
In [58] Sanati and Kardel characterized the class of operators that preserve orthogonality
on Hilbert space H of infinite dimension as a scalar multiple of unitary operators of H and
the subspaces of H that are closed. For an orthogonal preserving operator, it was shown
that the spectrum is any circle that is centred at the origin. The research of [73] studied
Birkhoff-James orthogonality for vector spaces in which a norm is defined for completely
continuous operators. Their main aim was to determine Birkhoff-James orthogonality of
completely continuous operators defined on a normed linear space. Using the concept of
semi-inner-products and the similar ideas in normed spaces, some of the recent results
were generalized and improved. In particular, Euclidean spaces was characterized and it
was also proved that there is a possibility of retrieving the norm of a completely continu-
ous operator in the terms of Birkhoff-James orthogonality set. Certain best approximation
type results were also presented in the space of linear operator that are bounded. In [30]
the study introduced the Bhatia-Semrl theorem for completely continuous operators on a
Hilbert space on infinite dimension and also characterized Euclidean spaces for all Banach
spaces of finite dimension. The concept of inner product spaces was correlated with the
notions of r+ and r−. This enabled them to get the norm of a completely continuous lin-
ear operators in relation to its interaction with Birkhoff-James orthogonality set. Finally,
some best approximation results were presented in Hilbert spaces and Banach spaces In
[50] Kallol presented results on Birkhoff-James and smoothness of operators in normed
spaces. Kallol [4] explored the orthogonality relation between elements in Banach spaces
Z of operators L(Z) that are linear and bounded. Smoothness of the space of operators
that are linear and bounded was also studied. In [22] Bhuwan and Prakash applied or-
thogonality in the best approximation in normed linear spaces. Hence, it was shown that
Birkhoff orthogonality means best approximation and best approximation means Birkhoff
orthogonality. It was also proved that for ε-orthogonality, ε-best approximation means
ε-orthogonality. The authors finally showed how pythagorean orthogonality and best
approximation, isosceles orthogonality and ε-best approximation are related in normed
spaces. In [12] Ali Zamani generalized operators for a semi-inner product on a Hilbert
space in the sense of Birkhoff-James. Given that P and Q are linear transformations on
a complex Hilbert space Z, the relation P ⊥K

J Q was defined if P and Q are bounded
with a semi-norm endowed with a positive operator J that satisfy ∥P + γQ∥J ⩾ ∥P∥J for
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a complex γ. This study proved that P ⊥K
J Q given that there exist a sequence {zn}

with a norm of 1 in Z such that limn→∞ ∥Pzn∥J = ∥P∥J and lim⟨Pzn,Qzn⟩J = 0. Some
distance formulas in Semi-Hilbert spaces were also Provided. In [13] Birkhoff-James or-
thogonality for linear transformations was characterized and proved to be a vector space
of operators on arbitrary Banach spaces. Arbitrary Banach spaces were characterized and
some conditions were obtained. They also studied orthogonality in space of operators
L(Z) on arbitrary Hilbert space Z, both in relation to operator norm and numerical ra-
dius norm. Birkhoff-James orthogonality of linear operators in Banach spaces was also
obtained. Their main goal was to determine Birkhoff-James orthogonality of the opera-
tor T ∈ L(Z,W) to the subspace of L(Z,W) in an arbitrary Banach spaces Z and W set
up. Arpita and Kallol [13] first characterized Q ⊥ R where Q ∈ L(W,Z) and R is a sub-
space of L(W,Z) of finite dimension and W is a reflexive Banach space given that Z is a
Banach space of finite dimension. For arbitrary Banach spaces W and Z of L(W,Z) and
for an arbitrary subspace W, Q ⊥B R under suitable conditions. They also characterized
T ∈ L(W,Z) to a subspace of L(H) in the sense of Birkhoff-James on a Hilbert space H
of infinite dimension. Later, it was discovered that in order to characterize orthogonality
of operators, there was need for the operators to attain norms. In [36] determined the
orthogonalities of Birkhoff-James and isosceles for operators defined on Hilbert spaces
and Banach spaces. There was no other universal concepts of orthogonality in a Banach
space unlike in Hilbert spaces. Then, it was found that there is a possibility of having sev-
eral types of orthogonality in such a space, in which each characterizes certain particular
concept of orthogonality in Hilbert spaces. Since lack of a standard orthogonality led to
the differences of Hilbert spaces and Banach spaces, the authors explored linear operators
in terms of Birkhoff-James in a different aspect and discussed some applications to this
regard. A study on Isosceles orthogonality of mappings that are linear and bounded on
a Hilbert space was done and related properties were determined, and properties of dis-
joint support were also included. It was shown that for bounded linear operators between
Banach space of infinite dimension, Bhatia-Semrl theorem verbatim of finite dimension
was extended under some additional assumptions. The author in [14] studied the prop-
erties of the set OP,A = {x ∈ SX : Px ⊥ Py} for any P ∈ L(X, Y) and characterized the
Hilbert space of finite-dimension in relation to the new introduced concept. They focused
on orthogonality of operators that were positive and those that were linear defined on
a Hilbert space. Isosceles orthogonality was generalized for two positive bounded linear
operators and some remarks between Birkhoff-James orthogonality and Isosceles orthog-
onality were discussed. Properties of Isosceles orthogonality and Birkhoff orthogonality
were further explored in Banach spaces. They concluded by establishing that Rorbert’s
orthogonality is more agreeable than that of either Birkhoff-James and Isosceles orthog-
onality. In [23] Bhuwan and Prakash enlisted properties of Birkhoff-Orthogonality and
Carlsson orthogonality and introduced two new particular cases of Carlsson orthogonal-
ity and checked some properties of orthogonality in relation to these particular cases in
normed spaces. They showed how isosceles, Rorbert and Pythagorean orthogonalities can
be derived from the carlsson orthogonality and obtained two new orthogonality relations
for the Carlsson. In [55] Priyanka and Sushil gave the known properties of Birkhoff-
James orthogonality in Banach space. Concepts of orthogonality, the Gateaux derivative
and the sub-differential set of norm function were discussed and important distance for-
mulas that were determined by characterizing Birkhoff-James orthogonality. This work
also mentioned the relation between orthogonality and geometric properties of normed



M. Orina et al / Orthogonality of Elementary Operators 60

spaces. This lead to the determination of different related concepts like characteriza-
tion of smooth points and extreme points, sub differential sets and ψ-Gateaux derivative
sets. Moreover, the authors also characterize symmetric property of orthogonality. Gen-
eralizations of orthogonality in different Banach spaces were determined together with
their applications. The characterizations obtained were used to determine distance for-
mulas in certain Banach spaces. In [69] Tanaka and Debmalya characterized the left
and right symmetric points in the terms of Birkhoff orthogonality in L(G,R) and K(G,R)
where G,R are complex Hilbert space and L(G,R) (K(G,R)) is the space of all compact
bounded mappings from G into R. Their main aim was to improve the notion of local
symmetry for a strong version of Birkhoff orthogonality. It was shown that an element
J in L(G,R) (K(G,R)) is left symmetric for ⊥L(G) (⊥K(G)) in L(G,R) (K(G,R)) provided
that J is rank one operator, it turned out that J ∈ L(G,R) given that J is right invert-
ible such that Q is of infinite dimension or dimG > dimR and J is an isometric scalar
multiple where G is of infinite dimension and dimG < dimR while J ∈ K(G,R) is right
symmetric for ⊥K(G)∈ K(G,R) if J has the dense range. Debmalya, Ray and Kallol [30]
explored the relation between the orthogonality of bounded linear operators and the el-
ements in the ground space. It was shown that if Q,R ∈ L(W,Z) satisfy Q ⊥B R, and
that there exists w ∈ W so that Qw ⊥ Rz with ∥z∥ = 1, ∥QW∥ = ∥T∥, given that W,Z
are normed linear spaces. The concept of property Dn for a Banach space was introduced
and its relation with orthogonality of a bounded linear operator on Banach spaces was
illustrated. Moreover, the property Dn for various polyhedra Banach spaces were charac-
terized. Their aim was to study Bhatia-Semri(BS) property in polyhedral Banach spaces
for bounded linear operators. For orthogonality of elementary operators, orthogonality of
range and kernel of normal derivations was determined by many authors. For instance,
Anderson [6] showed that if J and P are operators in L(Z) such that J is normal and
JP = PJ then for every Y ∈ L(Z), ∥δJ(Y) + P∥ ⩾ ∥P∥ where ∥.∥ is the usual oper-
ator norm. Anderson [4] showed that if Q is isometric or is normal then the range of
δQ is orthogonal to its nullspace. Also Anderson [6] proved that if Q is normal and has
infinite number of points then the closed linear space of the range and null space of δQ
is not all of L(Z). Kittaneh [48] extended the study and showed that given J and P

are operators in L(Z) such than J is normal, P is a Hilbert Schmidt operator and
P ∈ {J} then for all Y ∈ L(Z), ∥δJ(Y) + P∥2

2 ⩾ ∥δJ(Y)∥2
2 + ∥P∥2

2 where ∥.∥2 is the
Hilbert Schmidt operator norm. Therefore, the range of δJ if orthogonal to the kernel
of δJ for the Hilbert Schmidt operators in the usual sense. In the schatten p-norms Kit-
taneh [49] used the Gateaux differentiability and the usual operator norm to determine
the range and kernel orthogonality of elementary operators in relation to p-norms. In
[32] Duggal considered an elementary operator δab in which the operators a,b, x are
hyponormal, the operators a1,b2 are normal and a1 commutes with b2. Turnsek [71]
considered a normed algebra A and a linear operator ϕ : A → A and proved that the
range ϕ− 1 is orthogonal to its kernel if ∥ϕ∥ ⩽ 1. This could also be applied to the case
when ϕ;L(Z) → L(Z) is an arbitrary elementary operator defined by ϕ(Z) =

∑k
i=1AiZBi.

Dragoljub [27] proved the orthogonality of an important elementary operator in relation
to the unitary invariant norms and their association with the norm ideals of operators.
The group consisted the mapping Q : L(Z) → L(Z), Q(V) : FVH+ JVP where L(Z)
denotes the group of all bounded operators and F, H, J and P are normal operators so that
FJ = JF, HP = PH and KerF ∩ KerJ = KerH ∩ KerP = {0}. Moreover, the author estab-
lished this set in sense in which an orthogonality result holds. Bachir and Hashem [18]
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presented a new class of finite operators and extended orthogonality results to some finite
operators and some commutativity results were also generalized. Their main goal was to
investigate the orthogonality of RanδA,B and KerδA,B for certain finite operators. It was
proved that Ran(δA,B) is orthogonal to Ker(δA,B) where A is dominant and B∗ is
M-hyponormal. Duggal and Harste [33] studied orthogonality and range closure proper-
ties for some elementary operators as proved for hyponormal operators or contractions on
Hilbert spaces. Okelo and Agure [53] presented various types and aspects of orthogonality
in normed spaces. Indeed, the range and kernel orthogonality results for elementary op-
erators were given and the operators that characterize them were then provided. In [14]
Bouali and Bouhafsi exhibited pair (Q,R) of operators such that orthogonality of δQ,R is
valid for the usual operator norm. Range and nullspace of δQ,R results were obtained in
relation to the group of unitarily invariant norms. Bachir and Nawal [17] studied and
characterized the range-kernel orthogonality of the points C1(H), the trace class opera-
tors in nonsmoothness case and gave a counter example. In [52] Okelo characterized
orthogonality of elementary operators in norm attainable classes and gave conditions for
operators to be norm attainable in Hilbert spaces. Lastly, the range-kernel orthogonality
results were given for elementary operators in norm-attainable classes.

2. Preliminaries

Definition 2.1 ([9], Definition 3.1). Let X be a linear space over F .Then a norm on X
is a non-negative real-valued function ∥.∥ : X → R such that ∀ w, z ∈ X and η ∈ F the
following properties are satisfied:

(i). ∥w∥ ⩾ 0 and ∥w∥ = 0, if and only if w = 0.
(ii). ∥ηw∥ = |η|∥w∥.

(iii). ∥w+ z∥ ⩽ ∥w∥+ ∥z∥.

The ordered pair (X, ∥.∥) is called a normed space.

Definition 2.2 ([16], Definition 3.5). Suppose Z is a vector space with norm ∥.∥ and
d : Z × Z → R is a metric defined by d(w.z) = ∥w − z∥, then d is called the metric
associated with the norm.

Definition 2.3 ([32], Definition 3.18). Let Z be a real or complex vector space. An inner
product on Z is a function ⟨., .⟩ : Z× Z → J such that ∀ w, z, k ∈ Z and λ,β ∈ J ; if it
satisfy:

(i). ⟨w,w⟩ ⩾ 0 and ⟨w,w⟩ = 0, if and only if w = 0.
(ii). ⟨αw+βz,k⟩ = α⟨w,k⟩+β⟨z,k⟩.

(iii). ⟨λw, z⟩ = λ⟨w, z⟩.
(iv). ⟨w, z⟩ = ⟨z,w⟩.

The ordered pair (X, ⟨., .⟩) is called an inner product space.

Example 2.4 ([15], Example 2). Let X = Fn for w = (w1...wn) and z = (z1...zn) in X
define ⟨w, z⟩ =

∑n
i=1wizi.

Example 2.5 ([30], Example 1). Let X = l0 the space of finitely non-zero sequences of real
or complex numbers. For w = (w1...wn) and z = (z1...zn) in X define ⟨w, z⟩ =

∑∞
i=1wizi.
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Example 2.6 ([7], Example 4). Let Z = l2 the space of all sequences w = (w1,w2...) of
real or complex numbers for

∑∞
i=1 |wi|

2 < ∞. For w = (w1...wn) and z = (z1...zn) in X
define ⟨w, z⟩ =

∑∞
i=1wizi.

Example 2.7 ([8], Example 1). Let Z = C[q, s] the space of all continuous complex valued
function on C[q,g] for q,g ∈ Z define ⟨q,g⟩ =

∫g
q qtgtdt.

Definition 2.8 ([7], Definition 3.6-1). An operator P is said to be linear if, for every pair
of vectors w and z and scalar λ, P(l+ d) = P(l) + P(d) and P(λl) = λP(l).

Definition 2.9 ([36], Definition 3.2-1). Two vectors w, z ∈ H are called orthogonal,
denoted by w ⊥ z if ⟨w, z⟩ = 0.

Definition 2.10 ([52], Section 1). Consider a normed space D and let T :D → D. T is
said to be an elementary operator if it can be represented in the following form T(X) =
Σn
i=1SiXPi for all X ∈ D where Si and Pi are fixed in D.

Example 2.11. Let S = L(Z) for S,P ∈ L(Z) we define particular elementary operator.

(i). The left multiplication operator LS : L(Z) → L(Z) by LS(X) = SX, ∀ X ∈ L(Z).
(ii). The right multiplication operatorRP : L(Z) → L(Z) by RP(X) = XP, ∀ X ∈ L(Z).

(iii). The generalized derivation by δS,P = LS − RP.
(iv). The basic elementary operator by MS,P(X) = SXP, ∀ X ∈ L(Z).
(iv). The Jordan elementary operator by µS,P(X) = SXP+ PXS, ∀ X ∈ L(Z).

Definition 2.12 ([53], Section 1). The range of an operator P : L(H) → L(H) is defined
as Ran(T) = {y ∈ L(H) : y = T(x) ∀ x ∈ L(H)}.

Definition 2.13 ([53], Section 1). The kernel of an operator T : L(H) → L(H) is defined
as Ker(T) = {x ∈ L(H) : T(x) = 0 ∀ x ∈ L(H)}.

Definition 2.14 ([74], Section 2). A bounded linear operator S on a Hilbert space H is
called finite if ∥I− SX−XS∥ ⩾ 1 for each X ∈ L(H).

Definition 2.15 ([14], Section 2). A proper two sided ideal J in L(H) is called a norm
ideal if there is a norm on J possessing the following properties:

(i). (J, |∥.∥|) is a Banach space.
(ii). |∥SVP∥| ⩽ ∥S∥|∥V∥|∥P∥, for every S,P ∈ L(H) and for every V ∈ J.

(iii). |∥V∥| = ∥V∥, for V a rank one operator.

3. Main Results

In this section, we discuss the results of our study. We consider finiteness of elementary
operators, orthogonality conditions for finite elementary operators and Birkhoff-James
orthogonality for finite elementary operators.

Proposition 3.1. Let Ω be a normed space, then for S ∈ Ω, σp(S) ̸= ∅ if S is normaloid.

Proof. Let S ∈ Ω be normaloid, then ∥S∥ = r(S). This implies that there exist λ ∈ σp(S)
such that |λ| = ∥S∥. It is known that σp(S) ⊆ σap(S) ⊆ σ(S). Therefore, σp(S) = σap(S).
But λ is in the boundary of σp(S) and since this is a subset of the approximate point
spectrum of S, we have that λ ∈ σp(S) = σap(S). But for a sequence {xn}n∈N of unit
vectors we have, ∥(S− λI)xn∥ → 0. So 0 ∈ σp(S) and hence σp(S) ̸= ∅.
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Proposition 3.2. Every normaloid operator is finite.

Proof. From Proposition 3.1 we have that σp(S) ̸= ∅ if S is normaloid. To show that every
normaloid operator is finite, we let S to be a normaloid operator, i.e ∥S∥ = r(S). Hence,
there exist λ ∈ σp(S) such that |λ| = ∥S∥. By definition, an operator S in a normed space
Ω is finite if ∥SX−XS− I∥ ⩾ 1, for all X ∈ Ω. But ∥(S− λI)xn∥ → 0 with ∥xn∥ = 1. From
Gram schmidt procedure {xn} is a normalized sequence and hence we have,

∥(SX−XS) − I∥ = ∥((S− λI)X−X(S− λI)) − I∥
⩾ |⟨(S− λI)Xxn,xn⟩− ⟨X(S− λI)xn,xn⟩− I|
⩾ |⟨(S− λI)X−X(S− λI)⟩xn,xn − I|

⩾ |⟨(SX−XS)xn,xn⟩− I|.

Letting n→ ∞ we obtain ∥(SX−XS) − I∥ ⩾ 1.

Lemma 3.3. Let S ∈ Ω be normaloid and So ∈ Ω be norm-attainable such that SSo = SoS.
Then for every η ∈ σp(So), ∥So − (SX−XS)∥ ⩾ |η| ∀X ∈ Ω.

Proof. From [52], if So ∈ Ω is norm-attainable, then it is normal. So, we let η ∈ σp(So)
and Mη be the eigenspace associated with η. Since SSo = SoS, we have SS∗o = S∗oS by
Fuglede Putnam’s Theorem [36]. Hence Mη reduces both S and So. According to the
decomposition of H =Mη ⊕M⊥

η , we write S, So and X as follows:

S =

(
S1 0
0 S1

)
, So =

(
η 0
0 S2

)
and X =

(
X1 X2
X3 X4

)
.

We have,

∥So − (SX−XS)∥ =

∥∥∥∥( η− (S1X1 −X1S1) ∗
∗ ∗

)∥∥∥∥
⩾ ∥η− (S1X1 −X1S1)∥

⩾ |η|

∥∥∥∥1 −

((
S1X1

η

)
−

(
X1S1

η

))∥∥∥∥
⩾ |η|.

Lemma 3.4. Every paranormal operator in a unital C∗ algebra Ω is finite.

Proof. Let S be a paranormal operator, then S is normal i.e S∗S = SS∗. By Berberian
theorem, it is known that, there exist a ∗-isometric isomorphism ψ : Ω→ Ω that preserves
order such that,

∥S∥2 = ∥SS∗∥ = 1 ⩽ ∥(SX−XS) − I∥
⩽ ∥ψ(SX−XS) − I∥
⩽ ∥(ψ(S)ψ(X) −ψ(X)ψ(S)) − I∥.

If S ∈ Ω is an element of F(H) such that σp(S) ̸= ∅ then it results from Proposition 3.2
that ψ(S) ∈ Ω is finite i.e.

∥(SX−XS) − I∥ = ∥(ψ(S)ψ(X) −ψ(X)ψ(S)) − I∥ ⩾ 1.
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Theorem 3.5. Let S ∈ Ω be norm-attainable. Then J = S+ P is finite where P is compact in
a C∗-algebra Ω.

Proof. Let S be norm-attainable, since Ω is a unital C∗-algebra, it follows that J = S+ P is
finite. Indeed from Lemma 3.4 and Proposition 3.2 we have,

∥J∥2 = ∥JJ∗∥ = 1 ⩽ ∥(JX−XJ) − I∥
⩽ ∥(SX−XS) − I∥
⩽ ∥(SX+ PP−1 −XS+ P−1P) − I∥
⩽ ∥(S+ P)(X+ P−1) − (X+ P−1)(S+ P) − I∥.

For Y = X+ P−1 we have, ∥(S+ P)Y − Y(S+ P) − I∥ ⩾ 1. This proves that J = S+ P is a
finite operator.

Corollary 3.6. Let S ∈ Ω be log-hyponormal and S∗be p-hyponormal then ∥J − (SX −
XSo)∥ ⩾ ∥J∥, for all X ∈ Ω and for all J ∈ kerδS,So

.

Proof. If J ∈KerδS,So
, then also J ∈KerδS∗S∗

o
by Putnam-Fuglede’s theorem in [36]. There-

fore, SJJ∗ = JS∗o = JJ∗S. Since S is log-hyponormal, JJ∗ is normal and S(JJ∗) = (JJ∗)S.
Since X ∈ Ω, we deduce that

∥J∥2 = ∥JJ∗∥ = ∥JJ∗ − SXJ∗ −XJ∗S∥
⩽ ∥JJ∗ − SXJ∗ −XSoJ∗∥
⩽ ∥J∗∥∥J− (SX−XSo)∥

By Cauchy-Schwarz inequality [27], ∥J∥2 = ∥J∥∥J∗∥.
This implies that ∥J∥2 = ∥J∥∥J∗∥ ⩽ ∥J∗∥∥J− (SX−XSo)∥.
Dividing both sides by ∥J∗∥ we obtain,
∥J∥ ⩽ ∥J− (SX−XSo)∥.

Remark 3.7. At this point, we characterize finiteness of elementary operators in a general
set up. Let Cn(S,So) be the set of all (S,So) ∈ Ω×Ω such that S and So have an n-
dimensional reducing subspace Jn(S,So) satisfying S | Jn(S,So) = So | Jn(S,So).

Now, we characterize finiteness in the cartesian product of Ω×Ω in the next proposition.

Proposition 3.8. Let (S,So) ∈ Cn(S,So). Then, the following inequality holds i.e ∥(SX−
XSo) − I∥ ⩾ 1.

Proof. Let
(
S1 0
0 0

)
and

(
S2 0
0 0

)
be the matrix representation of S and So respec-

tively relative to the decomposition H = H1 ⊕H⊥
1 where H1 is an n-dimensional reducing

subspace of S and So i.e H1 = Jn(S,So). For any operator X on H has a representation
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X =

(
X1 0
0 0

)
. Let I =

(
I1 0
0 0

)
. It follows that,

∥(SX−XSo) − I∥ =

∥∥∥∥[( S1X1 0
0 0

)
−

(
X1S2 0

0 0

)]
−

(
I1 0
0 0

)∥∥∥∥
=

∥∥∥∥( S1X1 −X1S2 0
0 0

)
−

(
I1 0
0 0

)∥∥∥∥
=

∥∥∥∥( (S1X1 −X1S2) − I1 0
0 0

)∥∥∥∥
⩾ ∥(S1X1 −X1S2) − I1∥.

This implies that

∥(SX−XSo) − I∥ ⩾ ∥(S1X1 −X1S2) − I1∥ ⩾ ∥I1∥ = ∥I∥.

Hence, ∥(SX−XSo) − I∥ ⩾ 1.

Proposition 3.9. Let (S,So) ∈ Cn(S,So). Then the following inequality holds i.e ∥(SXSo) −
I∥ ⩾ 1.

Proof. Let S, So, X and I have the following representation:

S =

(
S1 0
0 0

)
, X =

(
X1 0
0 0

)
, So =

(
S2 0
0 0

)
, and I =

(
I1 0
0 0

)
From Proposition 3.8, it follows that,

∥(SXSo) − I∥ =

∥∥∥∥[( S1 0
0 0

)(
X1 0
0 0

)(
S2 0
0 0

)]
−

(
I1 0
0 0

)∥∥∥∥
=

∥∥∥∥( S1X1S2 0
0 0

)
−

(
I1 0
0 0

)∥∥∥∥
=

∥∥∥∥( (S1X1S2) − I1 0
0 0

)∥∥∥∥ .

⩾ ∥(S1X1S2) − I1∥.

This implies that
∥(SXSo) − I∥ ⩾ ∥(S1X1S2) − I1∥ ⩾ ∥I1∥ = ∥I∥.

Hence, ∥(SXSo) − I∥ ⩾ 1.

Theorem 3.10. Let (S,So) ∈ Cn(S,So). Then the following inequality holds i.e ∥(SXSo +
SoXS) − I∥ ⩾ 1.

Proof. Let S, So, X, and I have the following representation[decomposition]. S =

(
S1 0
0 0

)
,

X =

(
X1 0
0 0

)
, So =

(
S2 0
0 0

)
, and I =

(
I1 0
0 0

)
.
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From Proposition 3.8 and Proposition 3.9 we have,

∥(SXSo + SoXS) − I∥ =

∥∥∥∥[( S1X1S2 0
0 0

)
+

(
S2X1S1 0

0 0

)]
−

(
I1 0
0 0

)∥∥∥∥
=

∥∥∥∥( S1X1S2 + S2X1S1 0
0 0

)
−

(
I1 0
0 0

)∥∥∥∥
=

∥∥∥∥( (S1X1S2 + S2X1S1) − I1 0
0 0

)∥∥∥∥
⩾ ∥(S1X1S2 + S2X1S1) − I1∥.

This implies that

∥(SXSo + SoXS) − I∥ ⩾ ∥(S1X1S2 + S2X1S1) − I1∥ ⩾ ∥I1∥ = ∥I∥.

Hence, ∥(SXSo + SoXS) − I∥ ⩾ 1.

Theorem 3.11. Let (S,So) ∈ Cn(S,So). Then the following inequality holds i.e ∥(SXSo +
CXCo) − I∥ ⩾ 1.

Proof. Let S, So, C, Co, X, and I have the following representation[decomposition].

S =

(
S1 0
0 0

)
, X =

(
X1 0
0 0

)
, So =

(
S2 0
0 0

)
, C =

(
C1 0
0 0

)
, Co =

(
C2 0
0 0

)
and I =

(
I1 0
0 0

)
.

From Theorem 3.10 we have,

∥(SXSo +CXCo) − I∥ =

∥∥∥∥[( S1X1S2 0
0 0

)
+

(
C1X1C2 0

0 0

)]
−

(
I1 0
0 0

)∥∥∥∥
=

∥∥∥∥( S1X1S2 +C1X1C2 0
0 0

)
−

(
I1 0
0 0

)∥∥∥∥
=

∥∥∥∥( (S1X1S2 +C1X1C2) − I1 0
0 0

)∥∥∥∥
⩾ ∥(S1X1S2 +C1X1C2) − I1∥.

This implies that

∥(SXSo +CXCo) − I∥ ⩾ ∥(S1X1S2 +C1X1C2) − I1∥ ⩾ ∥I1∥ = ∥I∥.

Hence, ∥(SXSo +CXCo) − I∥ ⩾ 1.

Theorem 3.12. Let (S,So) ∈ Cn(S,So). Then the following inequality holds i.e ∥
∑n

i=1 SiXCi−
I∥ ⩾ 1.

Proof. Let Si, X, Ci and I have the following representation.

Si =

(
S1 0
0 0

)
, X =

(
X1 0
0 0

)
, Ci =

(
C1 0
0 0

)
, I =

(
I1 0
0 0

)
.
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From Theorem 3.11 it follows that,∥∥∥∥∥
n∑

i=1

SiXCi − I

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

[(
S1 0
0 0

)(
X1 0
0 0

)(
C1 0
0 0

)]
−

(
I1 0
0 0

)∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=1

(
S1X1C1 0

0 0

)
−

(
I1 0
0 0

)∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=1

(
(S1X1C1) − I1 0

0 0

)∥∥∥∥∥
⩾

∥∥∥∥∥
n∑

i=1

(S1X1C1) − I1

∥∥∥∥∥ .

This implies that

∥
n∑

i=1

SiXCi − I∥ ⩾ ∥
n∑

i=1

(S1X1C1) − I1∥ ⩾ ∥I1∥ = ∥I∥.

Hence, ∥
∑n

i=1 SiXCi − I∥ ⩾ 1.

Remark 3.13. It is known from [59] that there exists a compact operator C such that
R(δc) = K(H). As a consequence we deduce that the dist(I,K(H)) = 1, where dist(I,K(H))
is the distance from I to K(H). Therefore if S,So are compact operators, then we have that
dist(I,R(δS,So

)) = 1.

At this juncture, we characterize orthogonality for finite elementary operators. Let Ω de-
note a Complex Banach algebra with identity I and let σr(Ω), σl(Ω) denote, respectively
the right spectrum and the left spectrum of Ω. Recall from [14] that

SnX−XSn =
∑n−i−1

i=0 Sn−i−1(SX−XS)Si for all X ∈ Ω.

If SJ = JS we have,

nJSn−1 = SnX−XSn −
∑n−i−1

i=0 Sn−i−1((SX−XS) − J)Si for all X ∈ Ω.

Proposition 3.14. Let S ∈ Ω, xn be an increasing sequence of positive integers and Sxn

converge to Z ∈ Ω, with 0 ̸∈ σr(Z) ∩ σl(Z). If there exist a constant λ such that ∥Sn∥ ⩽ λ

for all integers n and if So is the left or right inverse of Z then

λ2∥So∥∥(SX−XS) − J∥ ⩾ ∥J∥ for all X ∈ Ω and for all J ∈ KerδS.

Proof. Let X ∈ Ω, since

nJSn−1 = SnX−XSn −
∑n−i−1

i=0 Sn−i−1((SX−XS) − J)Si for SJ = JS.

We can write

(xn + 1)JSxn+1−1 = Sxn+1X−XSxn+1 −

xn+1−i−1∑
i=0

Sxn+1−i−1((SX−XS) − J)Si

= Sxn+1X−XSxn+1 −

xn−i∑
i=0

Sxn−i((SX−XS) − J)Si.
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Dividing both sides by xn + 1 and taking norms we obtain,
∥JSxn∥ ⩽ 1

xn+1∥|S
xn+1|+ |Sxn+1|∥∥X∥+ 1

xn+1
∑xn−i

i=0 ∥Sxn−i∥∥(SX−XS) − J∥∥Si∥
Since ∥Sn∥ ⩽ λ we have that ∥Sxn+1∥ ⩽ λ and hence we obtain,

∥JSxn∥ ⩽ 2λ
xn+1∥X∥+ λ

2∥(SX−XS) − J∥.

Letting n→ ∞ we obtain,

∥JSxn∥ ⩽ λ2∥(SX−XS) − J∥.

But Sxn converges to Z, so we have,

∥JZ∥ ⩽ λ2∥(SX−XS) − J∥.

Now, since So is in the right or the left of Z we have,

∥J∥ ⩽ ∥So∥λ2∥(SX−XS) − J∥.

Remark 3.15. Let S ∈ L(H) and xn be an increasing sequence of positive integers. Assume
that there is a constant λ such that ∥Sn∥ ⩽ λ for all integers n

(i) . If Sxn → P, with 0 ̸∈ σr(P)∩ σl(P), then
λ2∥(SX−XS) − J∥ ⩾ ∥J∥ for all X ∈ L(H) and for all J ∈ KerδS.

(ii) . If Sxn → P+K, with K compact and 0 ̸∈ σr(P)∩ σl(P), then
λ2∥(SX−XS) − J−K∥ ⩾ ∥J∥ for all X ∈ L(H) and for all J ∈ KerδS.

Theorem 3.16. Let S ∈ L(H) such that Sn = I for some integer n. Then λ2∥(SX−XS)− J∥ ⩾
∥J∥ for all X ∈ L(H) and for all J ∈ KerδS.

Proof. Since Sn = {I,S,S2, ...Sm−1} for all integers n, ∥Sn∥ ⩽ λ, n ∈ N and Sxn = I,
where xn = nm, n ∈ N. It is known from [49] that

nJSn−1 = SnX−XSn −
∑n−i−1

i=0 Sn−i−1((SX−XS) − J)Si, for all X ∈ L(H).

From Proposition 4.14 we have that

(xn + 1)JSxn+1−1 = Sxn+1X−XSxn+1 −

xn+1−i−1∑
i=0

Sxn+1−i−1(SX−XS− J)Si.

(xn + 1)JSxn = Sxn+1X−XSxn+1 −

xn−i∑
i=0

Sxn−i((SX−XS) − J)Si.

Dividing both sides by xn + 1 and taking the norms we obtain,
∥JSxn∥ ⩽ 1

xn+1∥|S
xn+1|+ |Sxn+1|∥∥X∥+ 1

xn+1
∑xn−i

i=0 ∥Sxn−i∥∥(SX−XS) − J∥∥Si∥
Since ∥Sn∥ ⩽ λ we have that ∥Sxn+1∥ ⩽ λ and hence we obtain,

∥JSxn∥ ⩽ 2λ
xn+1∥X∥+ λ

2∥(SX−XS) − J∥.

Since Sxn = I we have,

∥J∥ ⩽ 2λ
xn+1∥X∥+ λ

2∥(SX−XS) − J∥.
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Letting n tend to infinity, we get

∥J∥ ⩽ λ2∥(SX−XS) − J∥.

Hence, ∥J∥ ⩽ λ2∥(SX−XS) − J∥.

Corollary 3.17. Let S1,So ∈ L(H) such that Sm1 = I and Smo = I for some integer m. Then

∥(S1X−XSo) − J∥ ⩾ ∥J∥ for all X ∈ L(H) and for all J ∈ KerδS1,So
.

Proof. Consider the operators P, S and Y defined on H⊕H.

P =

(
S1 0
0 So

)
, S =

(
0 J

0 0

)
and Y =

(
0 X

0 0

)
.

Then P is normal on H⊕H and it is clear that Pm = 1, PS = SP i.e S ∈ Kerδp.

Since PY − YP =

(
0 S1X

0 0

)
−

(
0 XSo
0 0

)

∥(PY − YP) − S∥ =

∥∥∥∥( 0 S1X−XSo
0 0

)
−

(
0 J

0 0

)∥∥∥∥
=

∥∥∥∥( 0 (S1X−XSo) − J
0 0

)∥∥∥∥ .

Then, it follows that

∥PY − YP− S∥ ⩾ ∥S∥.

Consequently, from Theorem 3.12 we obtain,

∥(S1X−XSo) − J∥ ⩾ ∥(PY − YP) − S∥ ⩾ ∥S∥ = ∥J∥.

Proposition 3.18. Let S,So ∈ F(H). If So ∈ [F(H)]−1 and ∥S∥∥S−1
o ∥ ⩽ 1, then ∥δS,So

+ J∥ ⩾
∥J∥ for all X ∈ F(H) and J ∈ KerδS,So

.

Proof. Let J ∈ F(H) such that SJ = JSo. Therefore, SJS−1
o = J. But ∥S∥∥S−1

o ∥ = 1. It
follows from [32] that

∥SYS−1
o − Y + J∥ ⩾ ∥J∥, ∀Y ∈ F(H).

If we set X = YS−1
o then we obtain,

∥(SX−XSo) + J∥ ⩾ ∥J∥ for all X ∈ F(H).

But δS,So
(X)=SX−XSo.

Hence, ∥δS,So
(X) + J∥ ⩾ ∥J∥, for all J ∈ KerδS,So

and for all X ∈ F(H).

Remark 3.19. If (J, |∥.∥|) is a norm ideal then the norm |∥.∥| is unitarily invariant in the
sense that |∥SXP∥| = |∥T∥| for all T ∈ J and for all unitary operators.

Remark 3.20. Let (J, |∥.∥|) be a norm ideal and S,P ∈ L(H). If S is isometric and P contrac-
tive, then

|∥δS,P(X) + T∥| ⩾ |∥T∥| for all X ∈ J and for all T ∈ KerδS,P.
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Proposition 3.21. Let (J, |∥.∥|) be a norm ideal and S ∈ F(H). Suppose that f(S) is a cyclic
subnormal operator, where f is a nonconstant analytic function on an open set containing
σ(S). Then

|∥δS(X) + T∥| ⩾ |∥T∥| for all X ∈ J and for all T ∈ {S}∩ J.

Proof. Let T ∈ J such that ST = TS. This implies that Tf(S) = f(S)T and Sf(S) = f(S)S.
Since f(S) is a cyclic subnormal operator, it follows from [75] that S and T are subnor-
mal. But every subnormal operator is hyponormal [24]. Therefore, T is normal. Conse-
quently, ST = TS implies that ST∗ = T∗S by Putnam-Fuglede Theorem. Hence, Ran(T)
and Ker(T)⊥ reduces S and S |R(T) and S |Ker(T)⊥ are normal operators. Let Tox = Tx for
each x ∈ Ker(T), it results that δS,P(To) = δS∗,P∗(To) = 0. Let S = S1 ⊕ S2 with respect to

H = R(T)⊕ R(T)⊥ and P = P1 ⊕ P2 with respect to H = Ker(T)⊥ ⊕ Ker(T). Then we can
write S, T and X as follows

S =

(
S1 0
0 0

)
, T =

(
T1 0
0 0

)
and X =

(
X1 0
0 0

)
.

Then,

|∥(SX−XS) + T∥| =
∣∣∣∣∥∥∥∥( S1X1 −X1S1 + T1 0

0 0

)∥∥∥∥∣∣∣∣ .
This implies that

|∥(SX−XS) + T∥| ⩾ |∥S1X1 −X1S1 + T1∥| ⩾ |∥T1∥ = ∥T∥|.

Hence, |∥δS(X) + T∥| ⩾ |∥δS1(X) + T1∥| ⩾ |∥T1∥| = |∥T∥|.

Proposition 3.22. Let S,P ∈ F(H) such that the pair (S,P) possesses the PF property. Then,
|∥δS,P + T∥| ⩾ |∥T∥| for all X ∈ J and T ∈ KerδS,P.

Proof. Let T ∈ J, since the pair S,P satisfies PF property. Then, Ran(T) reduces S and
Ker(T)⊥ reduces P and S |Ran(T) and P |Ker(T)⊥ are normal operators. Let To : Ker(T)⊥ →
Ran(T) be the quasi affinity defined by setting Tox = Tx for each x ∈ Ker(T), it results that

δS,P(To) = δS∗,P∗(To) = 0. Let S = S1 ⊕ S2 with respect to H = Ran(T)⊕ Ran(T)⊥ and
P = P1 ⊕ P2 with respect to H = Ker(T)⊥ ⊕ Ker(T). Let S, P,T and X have the following
representation.

S =

(
S1 0
0 0

)
,P =

(
P1 0
0 0

)
T =

(
T1 0
0 0

)
and X =

(
X1 X2
X3 X4

)
.

From Proposition 3.2 we have,

|∥(SX−XP) + T∥| =
∣∣∣∣∥∥∥∥( (S1X1 −X1P1) + T1 0

0 0

)∥∥∥∥∣∣∣∣ .
This implies that

|∥(SX−XP) + T∥| ⩾ |∥(S1X1 −X1P1) + T1∥| ⩾ |∥T1∥| = |∥T∥|.

Hence, |∥δS,P(X) + T∥| ⩾ |∥δS1,P1(X) + T1∥| ⩾ |∥T1∥| = |∥T∥|.

Proposition 3.23. Let S,P ∈ F(H) be normal operators such that SP = PS and S∗S+ P∗P >
0. For an elementary operator E(X) = SXP− PXS, |∥E(X) + J∥| ⩾ |∥J∥| for all J ∈ KerE.

Proof. Assume that P−1 ∈ L(H), then from SP = PS and SJP = PJSwe get, SP−1J = JP−1S.
Hence applying theorem AK [38] to the operators SP−1, P−1S and J we get,
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|∥(SX−XS) + J∥| ⩾ |∥(SP−1PXP− PXP−1S) + J∥| ⩾ |∥J∥|.

Consider now the case when P is injective i.e KerP = 0. Let σn = {λ ∈ C : λ ⩽ 1
n } and let

EP(σn) be the corresponding spectral projector. If we put Pn = I− EP(σn). The subspace
PnH reduces both S and P (since they commute and are normal). Hence, with respect to
the decomposition H = (I− Pn)H⊕ Pn(H)

S =

(
0 0
0 S

(n)
1

)
,P =

(
0 0
0 P

(n)
1

)
J =

(
J
(n)
11 J

(n)
12

J
(n)
21 J

(n)
22

)
and X =

(
X
(n)
11 X

(n)
12

X
(n)
21 X

(n)
22

)
.

It is easy to see that P(n)
1 acting on Pn(H) is invertible. It follows that

|∥SXP− PXS+ J∥| ⩾ |∥Pn(SXP− PXS+ J)Pn∥|
= |∥S(n)

1 X
(n)
22 P

(n)
1 − P

(n)
1 X

(n)
22 S

(n)
1 + J22∥|

⩾ |∥J22∥| = |∥PnJPn∥|

Therefore, we have |∥SXP− PXS+ J∥| ⩾ |∥PnJPn∥|.
Applying Lemma 3 in [62] we obtain |∥SXP− PXS+ J∥| ⩾ |∥J∥|.
Now, we assume that KerS∩KerP = {0}. Let S, P, J and X have the following representa-
tion with respect to the space decomposition H = KerP⊕Ho(Ho ⊖KerP).

S =

(
S1 0
0 S2

)
,P =

(
0 0
0 P2

)
, J =

(
J11 J12
J21 J22

)
and X =

(
X11 X12
X21 X22

)
.

Operators S1 and P2 are injective and we have,

(SXP− PXS) =

(
0 S1X12P2

−P2X21S1 S2X22P2 − P2X22S2

)
.

Since SJP = PJS = 0, then S2J22P2 = P2J22S2 and S1J12P2 = P2J21S1 = 0 since S1 and P2
are injective and their ranges are dense. We have,

|∥SXP− PXS+ J∥| =

∣∣∣∣∥∥∥∥( 0 S1X12P2
−P2X21S1 S2X22P2 − P2X22S2

)
+

(
J11 J12
J21 J22

)∥∥∥∥∣∣∣∣
=

∣∣∣∣∥∥∥∥( J11 S1X12P2
−P2X21S1 S2X22P2 − P2X22S2 + J22

)∥∥∥∥∣∣∣∣ .
Since P2 is injective, we have already shown that

|∥S2X22P2 − P2X22S2 + J22∥| ⩾ |∥J22∥|

Applying Lemma GK in [62] we have

|∥S2X22P2 − P2X22S2 + J22∥| ⩾

∣∣∣∣∥∥∥∥( J11 0
0 S2X22P2 − P2X22S2 + J22

)∥∥∥∥∣∣∣∣
⩾

∣∣∣∣∥∥∥∥( J11 0
0 J22

)∥∥∥∥∣∣∣∣ = |∥J∥|.

Theorem 3.24. Let S,P ∈ L(H) be normal operators such that PS = SP and E(X) = SXP−
PXS. If J ∈ KerE then

|∥E(X) + J∥| ⩾ 3−1|∥J∥| (3.1)

and
∥E(X) + J∥p ⩾ 2|1−

2
P |∥J∥p, (3.2)
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where ∥.∥P is the CP norm.
In particular, for the Hilbert Schmidt-norm we have

∥E(X) + J∥2
2 ⩾ ∥J∥2

2 + ∥E(X)∥2
2. (3.3)

Proof. Let S, P, J and X have the following representation with respect to the space de-
composition H = H1 ⊕H2, where H1 = KerS∩KerP) and H2 = H⊖H1

S =

(
0 0
0 S2

)
,P =

(
0 0
0 P2

)
, J =

(
J11 J12
J21 J22

)
and X =

(
X11 X12
X21 X22

)
.

We have that KerS2 ∩KerP2 = {0} in H2. Applying Proposition 3.23 we have,

|∥SXP− PXS+ J∥| =

∣∣∣∣∥∥∥∥( J11 J12
J21 S2X22P2 − P2X22S2 + J22

)∥∥∥∥∣∣∣∣
⩾ |∥S2X22P2 − P2X22S2 + J22∥|
⩾ 2−1 |∥S2X22P2 − P2X22S2 + J22∥|
⩾ 2−1 |∥S2X22P2 − P2X22S2∥|
⩾ 2−1 |∥SXP− PXS∥| .

For us to prove Inequality 3.2 we start with the same inequalities before and then we apply
Lemma K in [6] twice and Proposition 3.23. For 1 ⩽ p ⩽ 2 we have,

∥SXP− PXS+ J∥pp =

∥∥∥∥( 0 0
0 S2X22P2 − P2X22S2 + J22

)
+

(
J11 J12
J21 J22

)∥∥∥∥p
p

=

∥∥∥∥( J11 J12
J21 S2X22P2 − P2X22S2 + J22

)∥∥∥∥p
p

⩾ 2p−2(∥J11∥pp + ∥J12∥pp + ∥J21∥pp
+ ∥S2X22P2 − P2X22S2 + J22 + J22∥pp)
⩾ 2p−2(∥J11∥pp + ∥J12∥pp + ∥J21∥pp + ∥J22∥pp)
⩾ 2p−2∥J∥pp.

and for 2 ⩽ p <∞ we have,

∥SXP− PXS+ J∥pp =

∥∥∥∥( J11 J12
J21 S2X22P2 − P2X22S2 + J22 + J22

)∥∥∥∥p
p

⩾ 22−p(∥J11∥pp + ∥J12∥pp + ∥J21∥pp
+ ∥S2X22P2 − P2X22S2 + J22 + J22∥pp)
⩾ 22−p(∥J11∥pp + ∥J12∥pp + ∥J21∥pp + ∥J22∥pp)
⩾ 22−p∥J∥pp.

Hence, ∥SXP − PXS + J∥pp ⩾ 2|1−
2
p |∥J∥pp and this proves Inequality 3.2 Now, if p = 2

Inequality 3.2 becomes ∥E(X) + J∥2 ⩾ ∥J∥2 and this implies Inequality 3.3.

Corollary 3.25. Let S,P ∈ L(H) be normal, then for every operator J satisfying SJP = J,
∥SXP− PXS+ J∥ ⩾ ∥J∥ for all X ∈ L(H).
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Proof. Let SJP = J, then SJ = JP−1. Since SJP = J we have that SJP = PJS which implies
that SP−1J = JP−1S. Applying theorem AK [4] to the operators SP−1, P−1S and J and
from Proposition 3.8 we get

∥SXP− PXS+ J∥ = ∥SP−1PXP− PXPP−1S+ J∥ = ∥J∥.

Now, suppose P is not injective with respect to the decomposition H = Ker(P)⊥ ∩ KerP.
Using the condition SJP = J we have,

S =

(
S1 0
0 0

)
,P =

(
P1 0
0 0

)
, J =

(
J11 J12
J21 J22

)
and X =

(
X11 X12
X21 X22

)
.

where S1 is injective, from Proposition 4.23 it follows that

∥SXP− PXS+ J∥ =

∥∥∥∥( S1X1P1 − P1X1S1 J12
J21 J22

)∥∥∥∥
⩾

∥∥∥∥( J11 J12
J21 J22

)∥∥∥∥
⩾ ∥J∥.

Corollary 3.26. If the assumptions of Theorem 3.24 hold, then ranE∩KerE = {0} where the
closure can be taken in the more uniform norm. Hence E(E(X)) = 0 implies that E(X) = 0.

Proof. If S ∈ ranE ∩ KerE, then S = limn→∞E(xn) and E(S) = 0. From Theorem 2.1 in
[60] we have that

∥E(xn) − S∥ ⩾ c∥S∥.

Hence,
∥S− S∥ ⩾ c∥S∥.

Therefore,
S = 0.

At this point, we characterize Birkhoff-James orthogonality for finite elementary op-
erators. It is known from [52] that for any examples elementary defined in Section 2
(inner derivation, generalized derivation, basic elementary operator, Jordan elementary
operator) the following implication hold for a general bounded linear operator S on a
normed linear space Ω. i.e Ran(S) ⊥ KerS ⇒ Ran(S) ∩ KerS = 0 ⇒ Ran(S) ∩ KerS = 0,
where Ran(S) denotes the closure of the Range of S and KerS denotes the Kernel of S and
Ran(S) ⊥ KerS means Range of S is orthogonal to the Kernel of S in the sense of Birkhoff.

Proposition 3.27. Let S ∈ L(H) be isometric, then RanδS ⊥ KerδS.

Proof. From Proposition we know,

SnX−XSn =
∑n−i−1

i=0 (SX−XS)Si for all X ∈ L(H).

Therefore if SJ = JS we have,

nJSn−1 = SnX−XSn −
∑n−i−1

i=0 Sn−i−1((SX−XS) − J)Si for all X ∈ L(H).

Dividing both sides by n and taking norms we obtain,
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∥JSn−1∥ ⩽ 1
n∥S

nX+XSn∥+ 1
n

∑n−i−1
i=0 ∥Sn−i−1∥∥((SX−XS) − J)∥∥Si∥.

Since S is isometric we have,

∥J∥ ⩽ 2
n∥X∥+ ∥((SX−XS) − J)∥.

Letting n→ ∞ we obtain,
∥(SX−XS) − J∥ ⩾ ∥J∥ and hence, RanδS ⊥ KerδS.

Corollary 3.28. Let S,So ∈ L(H) be contractive such that δS,So
(J) = 0 for some J ∈ L(H).

Then

∥δS,So
+ J∥ ⩾ ∥J∥ for all X ∈ L(H).

Proof. Given J ∈ L(H) and from Proposition 3.27 we have,

nJSn−1
o = SnX−XSno −

∑n−i−1
i=0 Sn−i−1((SX−XSo) − J)S

i
o for all X ∈ L(H).

Dividing both sides by n and taking norms we obtain,
∥JSn−1

o ∥ ⩽ 1
n∥S

nX+ XSno∥+ 1
n

∑n−i−1
i=0 ∥Sn−i−1∥∥((SX− XSo) − J)∥∥Sio∥. But S and So

are contractive i.e ∥Sn∥ ⩽ 1 and ∥Sno∥ ⩽ 1. This implies that ∥Sn−1∥ ⩽ 1 and ∥Sn−1
o ∥ ⩽ 1

and hence we have,

∥J∥ ⩽ 2
n∥X∥+ ∥((SX−XSo) − J)∥.

Letting n→ ∞ we obtain,

∥(SX−XSo) − J∥ ⩾ ∥J∥. Therefore, RanδS,So
⊥ KerδS,So

.

Lemma 3.29. Let S,P ∈ L(H), such that the pair (S,P) satisfies (PF) property, then RanδS,P ⊥
KerδS,P.

Proof. Suppose X ∈ KerδS,P, then SX− XP ∈ RanδS,P ∩ KerδS,P. For J ∈ KerδS,P, we
have that the Ran(J) reduces S and Ker(J)⊥ reduces P and S |Ran(J) and P |Ker(J)⊥ are
normal operators. Let S, P,J and X have the following representation with respect to the
decompositions H = H1 = R(J)⊕ R(J)⊥, H = H2 = Ker(J)⊥ ⊕Ker(J).

S =

(
S1 0
0 0

)
,P =

(
P1 0
0 0

)
, J =

(
J1 0
0 0

)
and X =

(
X1 0
0 0

)
.

From Proposition 4.8 we have,

∥(SX−XP) + J∥ =

∥∥∥∥( (S1X1 −X1P1) + J1 0
0 0

)∥∥∥∥ .

This implies that

∥(SX−XP) + J∥ ⩾ ∥(S1X1 −X1P1) + J1∥ ⩾ ∥J1∥ = ∥J∥.

Hence, ∥δS,P(X) + J∥ ⩾ ∥δS1,P1(X) + J1∥ ⩾ ∥J1∥ = ∥J∥.
Therefore, RanδS,P ∩KerδS,P = 0.

Remark 3.30. Let S ∈ L(H) be quasihyponormal and T∗ be injective hyponormal operator,
if ST = TS for some X ∈ L(H). Then S∗T = T∗S, RanJ reduces S, KerJ⊥ reduces T and
S |Ran(J) and T |Ker(J)⊥ are unitarily equivalent normal operators.
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Theorem 3.31. Let S ∈ L(H) be quasihyponormal and T∗ be injective hyponormal operator
in L(H), then RanδS,T ⊥ KerδS,T .

Proof. The pair (S, T) has the PF(LH) property by Remark 3.30. Let J ∈ L(H) be such
that SJ = JT . Let S, T , J and X have the following representation with respect to the
decompositions H = K = Ran(J)⊕ Ran(J)⊥, H = L = Ker(J)⊥ ⊕Ker(J).

S =

(
S1 0
0 0

)
, T =

(
T1 0
0 0

)
, J =

(
J1 0
0 0

)
and X =

(
X1 0
0 0

)
. where T1 and S1 are

normal operators on K to L, then we have,

∥(SX−XT) + J∥ =

∥∥∥∥( (S1X1 −X1T1) + J1 0
0 0

)∥∥∥∥ .

Thus, from Lemma 3.29 it follows that

∥(SX−XT) + J∥ ⩾ ∥(S1X1 −X1T1) + J1∥ ⩾ ∥J1∥ = ∥J∥.

Hence, RanδS,T ⊥ KerδS,T .

Let E(X) = SXSo − SoXS, then we have the following theorem.

Theorem 3.32. Let S, So ∈ L(H) be normal operators such that SSo = SoS. Then ∥(SXSo−
SoXS) + J∥p ⩾ ∥J∥p, for all X ∈ Cp and for all J ∈ KerE∩Cp (1 ⩽ p <∞).

Proof. It suffices to take the Hilbert space H⊕H and the operators.

S =

(
S1 0
0 0

)
,So =

(
S2 0
0 0

)
, J =

(
J1 0
0 0

)
and X =

(
X1 0
0 0

)
. It follows that

∥(SXSo − SoXS) + J∥p =

∥∥∥∥( (S1X1S2 − S2X1S1) + J1 0
0 0

)∥∥∥∥
p

.

Thus, from Theorem 3.31 we have

∥(SXSo − SoXS) + J∥p ⩾ ∥(S1X1S2 − S2X1S1) + J1∥p ⩾ ∥J1∥p = ∥J∥p.

Hence, RanE ⊥ KerE.

Let φ(X) = SXSo − PXPo, then we have the following corollary.

Corollary 3.33. Let S, So, P, Po ∈ L(H) be normal operators such that SP = PS and
SoPo = PoSo. Then ∥(SXSo−PXPo)+ J∥p ⩾ ∥J∥p, for all X ∈ Cp and for all J ∈ Kerφ∩Cp

(1 ⩽ p <∞).

Proof. On H⊕H consider the operators S,So,P,Po, J and X defined by

S =

(
S1 0
0 0

)
,So =

(
S2 0
0 0

)
,P =

(
P1 0
0 0

)
,Po =

(
P2 0
0 0

)
, J =

(
J1 0
0 0

)
and

X =

(
X1 0
0 0

)
.

It follows that

∥(SXSo − PXPo) + J∥p =

∥∥∥∥( (S1X1S2 − P1X1P2) + J1 0
0 0

)∥∥∥∥
p

.

Thus, from Theorem 3.32 we have

∥(SXSo − PXPo) + J∥p ⩾ ∥(S1X1S2 − P1X1P2∥p ⩾ ∥J1∥p = ∥J∥p.

Hence, Ranφ ⊥ Kerφ.
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4. Conclusion

In this work, we have given a detailed survey on characterization of orthogonality of ele-
mentary operators in normed spaces. We considered these operators when they are finite
and unveiled new conditions which are necessary and sufficient for their orthogonality.
Lastly, we have characterized Birkhoff-James orthogonality for this class of operators. We
have shown that finite elementary operators satisfy orthogonality in the sense of Birkhoff-
James if they are bounded, isometric and normal.
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