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Abstract

In this paper, we study the class of boundary value problems for a nonlinear implicit fractional differ-
ential equation with periodic conditions involving a -Hilfer fractional derivative. With the help of proper-
ties Mittag-Leffler functions, and fixed-point techniques, we establish the existence and uniqueness results,
whereas the generalized Gronwall inequality is applied to get the stability results. Also, an example is pro-
vided to illustrate the obtained results.
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1. Introduction

The theory of fractional differential equations is very important since their nonlocal
property is appropriate to describe memory phenomena such as nonlocal elasticity, prop-
agation in complex medium, polymers, biological tissues, earth sediments, expansion of
universe too, and they have been emerging as an important area of investigation in the last
few decades. For details, we refer the reader to monographs of Kilbas et al. [1], Samko
et al. [2], Hilfer [3], Podlubny [4]. Over the last years, the stability results of functional
differential equations have been robustly developed. Very significant contributions about
concept of stability were introduced by Ulam [5], Hyers [6] and this type of stability called
Ulam-Hyers (UH) stability. Thereafter improvement of Ulam-Hyers stability provided by
Rassias [7] in 1978 so-called Ulam-Hyers-Rassias (UHR). For some recent results of sta-
bility analysis by different types of fractional derivative operators (FDOs), we refer the
reader to a series of papers [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Recently, Kilbas et al., in [1] introduced the properties of fractional integrals and frac-
tional derivatives with respect to another function. On the other hand, Furati and Kassim
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[24] studied the existence, uniqueness and stability results for a Cauchy-type problem
involving Hilfer FD. Sousa and Oliveira [25] proposed a - Hilfer FD and extended few
previous works dealing with the Hilfer [3, 24]. Teodoro et al., [26] analyzed a list of ex-
pressions to have a general overview of the concept of fractional integrals and derivatives.
Sousa and Oliveira [27] presented a Leibniz type rule for the 1-Hilfer fractional derivative
operator in two forms. In [28], the authors discussed the existence, uniqueness and UHR
stability results for \-Hilfer problem via a generalized Gronwall inequality. Moreover, they
discussed some important qualitative properties of solutions such as existence, uniqueness,
and stability results in the following chain [15, 18, 19, 25, 28, 29, 30, 31, 32, 33, 34]. Re-
cently Gao et al., in [35] established the existence and uniqueness of solutions to the Hilfer
nonlocal boundary value problem

DYPy(t) —cy(t) = flty(t), c<0,0<p<1,0<B<Lte (0T,

m
I:y(0) = ) MIGy(t), p<r=p+B—pB,Ti € (0T,
i=1

where Dg;ﬁdenotes the Hilfer FD of order p € (0,1) and type § € [0,1], I(l)IT is the
Reimann Liouville fractional integral of order 1 —r, r = p+ (1 —p), ¢ < 0 by using
some properties of Mittag-Leffler functions, and fixed point methods. Almalahi et al., in
[36] studied the existence, uniqueness and different types of stabilities of solutions for the
following problem:

DYPy(t) —Ay(t) = f(ty(t), DEPy(t),te (0,11,
I:y(0) = Ip:"y(T)

where Dopﬂs denotes the Hilfer FD of order p € (0,1) and type f € [0,1], 1(1): T is the
Reimann Liouville fractional integral of order 1 —r, r=p+ (1 —p), A <O0.

Motivated by [35, 36], the objective of this study is to investigate the existence, unique-
ness as well as the HU and HUR stabilities of the solutions of the proposed problem in-
volving -Hilfer FD of the form:

HDP AWy (1) —Av(t) = f(t,v(t), T DEP¥v(t), te]:=(0,T], (1.1)
: 1—11p B T 1—r1p
tlgg+ Iy 7v(t) = tl_lgl_ Iy Fv(t), (1.2)

where HD‘O’;ﬁ"l’denotes the V-Hilfer FD of order p € (0,1) and type f € [0,1], I(l)j b
is the {-Reimann Liouville fractional integral of order 1 — v, r =p+ (1 —p), A < 0, and
f:] xR xR — R is given function .

This paper is organized as following: In Section 2, we recall the basic definitions and
lemmas which are used throughout this paper, also we present the concepts of some fixed
point theorems. In Section 3, we study the existence and uniqueness results of \-Hilfer
fractional implicit differential equation (FIDEs) by using Schaefer’s fixed point theorem,
Banach contraction principle and properties of Mittag-Leffler function. In Section 4, we
discuss four different types stability of solutions to a given problem. At the end, an exam-
ple to illustrate our results in Section 5.
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2. Preliminaries

In this section, we give some basic definitions and lemmas which are essential for the
proofs of our results.

Let C(J,R) be the Banach space of all continuous functions on | into R with |[v|| =
max{[v(t)|: t € J}. For 0 < r < 1, the weighted space C;_r, (J,R) of continuous function
v: ] — R is defined by

Cl—r;l]) U/]R) = {V : I - ]R; (ll)(t) _w(o))lirv(t) eC U/IR)}/O <r<1

with norm

Ve, 0 0R) = max [(W(t) —p(0) ()]

Obviously C1_, (J,R) is Banach space with the above norm.

Definition 2.1. [25] Letp > 0, v € L1 (J,R) and { € C!(J,IR) be an increasing function
with Y’ (t) # 0, for all t € J. Then, the left-sided 1-Riemann-Liouville fractional integral
of a function v is defined by

1 t
BV = o | W90 b)) vs)ds e
r'p) Jo
Definition 2.2. [25] Letn—1 < p < nwithn € N, and v,¢ € C™ (]J,IR) two functions
such that 1 is increasing and \’(t) # 0, for all t € J. The left-sided {-Hilfer FD of a
function v of order p and type 0 < § < 1 is defined by

—p); 1 d\" (1-p)(n—p);
HDP By (g) — [BmP) (xb/(t) dt) (1B np)by 4

One has,
HDPPBPy(t) = 1P P DI (1)
Theorem 2.3. [25] Letv € C! (J,R),0<p <1, and 0 < B < 1. Then
HDPPAPIP Py (t) = v(t).
Lemma 2.4. [25] Letv € C;_,[0,T],0 <p < 1. Then

Igﬁ) v(0) = t%+lgiwv(t) =0,0<T<p

Lemma 2.5. [12] (Lemma 20) Letp >0, 3 >0andr=p+p —pR.Ifv(t) € CLW) (J,R),
then

o "Dyt = 1 DR E (),

and )
HDIP IR Pu(t) = HDP Py ).

Lemma 2.6. [1] Let p,v > 0, then
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I'(r)

r—1
i 7y (0 ()"

B () —w(s) ! =

and
DY (b(1) —w(s)" " =0,

Lemma 2.7. [25] Letp € (0,1), 0 <1< L, v € Ciyy (J,R) and Ij;"¥v e C1__ | (], R).
Then we have

B DR =iy - PO e o)

Lemma 2.8. ([37], Lemma 2) Let p € (0,1) and 3 > 0 be arbitrary. The function E,(-),
Epp () and E,, g (-) are nonnegative, and for all z < 0

1 1
—, Epp(z) € =—.
Fo) PP S g
Lemma 2.9. Let p € (0,1) and § > 0. Then, for t1,t, € ], we have
Epp+p (A(M(t2) =(0))°) = Ep pip (A(W(t1) —(0))°) astr — ty, (2.1)
where E o p the Mittag-Leffler function defined by

Ep(z) = Ep,l(Z) <1, Ep,p(z) <

Zk

Eppiplz) =) ———, z€R
= Tk +p+p)

Proof. By definition of Mittag-Leffler function, we get
Ep o+B (Mll)(tz) ¥(0))P) = Ep,pip (A (t1) —(0))°)

B Z o g L) — 607 — (1) = (0.

Now, let h(t) = (P(t) —(0))°*. By Lagrange Mean value theorem, there exist € €
[t1, t2] C J, such that
h(tZ) - h(tl) < h/(e).
th —1t
Then, for e < t; < T, we get

(W(t2) = $(0))P* — ((t1) —(0))°*
pky’(e)(w(e) =1 (0))** Ttz — ]
Pk’ (T) (W(T) = (0))°* ! [tz — tal .

NN

Thus

[Epop AW(t2) —¥(0))°) —Ep pip (A(W(t1) —1(0))°)]

i [N<] ek’ (T) (W (T) = (0))°F1

<
Ipk+p+B)

Ito —t4]

k=0
— 0Oast, — t;.

Hence Ep o5 (A(W(t2) =1(0))°) = Epprp (AW (t1) —(0))°) as t — t1. o
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Lemma 2.10. Letp € (0,1), >0, r >0and A € R. Then

Y (P(t) —1(0))P1Ep 5 (A(W(t) —1(0))P)
= (W(t) —(0)PPIE, oy g (A(W(t) —(0))°).

Proof. By definition 2.1, we have

Y (P(t) —1(0)P1Ep 5 (A(W(t) —1(0))P)

t
_ 1J W (8) () — ()P (W(s) — p(0))P
I'(p) Jo

0]

S A" (W(s) —p(0))"P

Fontp)

AT 1 t / -1 pn+p—1
= > JII)(S)(ll)(t)—ll)(S))p (b(s) —(0)) ,

by lemma 2.6, we get

Y (W(t) —1(0)P1Ep 5 (A(W(t) —1(0))P)
= (W) —W(0)PTPTIE, o g (A(W(t) —1(0))°)

Lemma 2.11. Letp € (0,1), >0, p>0,A€e R, z€ Rand f € C(]J,R), then

z

Igf"J W (s)W(z) —0(s))PEpp (AW(2) — W(s))?) f(s)ds

0

- L W (8)(2) — ()PP Ep psp (A((2) — (s))P) F(s)ds.

Proof. According to definition 2.1, we obtain

s L P (s)(b(2) = ()P Ep,p (A(W(2) —(s))P) f(s)ds

— L i _ p—1
o7 | e —ww)

{ L V()W) —h(s)PTEp,p AW w(s))p)f(s)ds} du

— L [y _ p—1
= o7 ), |, Wb i)

Epo (AW (w) = (s))P) W' (W) ((2) — b(w))P~f(s)duds
- L f($)T(P)W' (s) (W (2) = $(s)° TP Ep p1p (MW(2) —(s))P) ds

= J P (s)(W(2) =W (s))PTP T Ep o4 (M(2) —U(5))°) F(s)ds.
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Lemma 2.12. [28] Let p > 0 and x, v be two nonnegative function locally integrable on J.
Assume that g is nonnegative and nondecreasing, and let \p € C! (J,R) an increasing function
such that ' (t) # 0 forall t € J. If

x(t) <v(t) + g(t)J P (s)(W(t) —(s))P x(s)ds, te],

0

then

If v be a nondecreasing function on J. then, we have

x(t) < V(D) Ep {g(tT(p) (W (1) = (0))P}, te].

Lemma 2.13. Let f € Ci_1,y (J,R) and A € R,p € (0,1),p € [0,1]. Then the -Hilfer
problem

1'1D§;6;¢v(t) —Av(t) T_f(‘t), te], 2.2)
limg o+ Iy "Pv(t) = lime - I 7¥V(0), p <t =p+ B — PP
is equivalent to integral equation
v(t) = (b(t)—(0))" 'R
JOT V' (s)(W(T) = ()P TEp pre1 (AWD(T) —W(s))P) f(s)ds
+ Lt V' (s)(W(t) = ()P Epp (MW(t) —(s))P) f(s)ds,
where Ep, 1 (AW(T) —(0))P) # 1 and R := (- AT
Proof. By [38], the solution of the following problem
HDPPEy(t) —Av(t) = f(t), te],
I Pv(0)=vo, p<T=p+p—ph
is given by
v(t) = (W) =(0))Epr AW() =1 (0)P) T v (0)
+ Lt V' (8)(W(t) = ()P Epp (MW(t) —(s))P) f(s)ds. (2.3)

Next, by multiplying the operator Ié: "% to both sides of (2.3), with the help of lemmas
2.10, 2.11, we get

I Pv(t) = Epa (A(t) —(0)P) I: Tv(0)

t
+J V()W (t) —W(s))PTEp prs1 (AW (t) = (s))P) f(s)ds. (2.4)

0
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Taking the limit t — T~ on both sides of (2.4), it follows that
1— ,'Ll)
Il*‘y,ll)v(o) _ Io+ ' v(T) 1

o Ept AT =0 (0))P)  Epa AW(T) —(0))P)
7
L V() (W(T) = ()P Ep p—rr1 A(WD(T) —(s))P) f(s)ds.

Since limy_, g+ I(l)+ TPy(t) = limy_ - I(l)+ "y(t), we obtain

T—y b _ 1
- "v(0) = 1—Ep1 AW(T) —(0))P)

LT V() (W(T) = ()P "Epp—rr1 (AW(T) —p(s))P) f(s)ds. (2.5)
From (2.2) and (2.5), it follwos that
v(t) = (b(t)—p(0)) 'R
LT V() (W(T) =W (s)P " Ep p—r+1 AMD(T) —(s))P) f(s)ds

t
+L V()W) — ()P Epp (A1) — h(s))P) f(s)ds. 2.6)

Conversely, applying Ié:r"l’ to both sides of (2.6), with the help of lemmas 2.10 and 2.11,
we have

Ep1 (A(W(t) —(0))P)
1—Ep1 (A(D(T) —(0))P)

N
L V() (W(T) =W (8)P " Ep p—rs1 AMD(T) —(s))P) f(s)ds

M) =

t
+L V()W (T) =W (s))P " Epp—ri1 (A(D(t) —W(s))P) f(s)ds. (2.7)
By lemma 2.4 and taking the limit as t — 0,

1—r _ 1
b VO = T TR m w7

N
JO V() (W (T) =W (s)P " Ep p—rs1 AMD(T) —(s))P) f(s)ds, (2.8)

Similarly, taking the limit as t — T of (2.7), we have

T—rp B 1
oV = T A m =)

-
JO W (s)(W(T) = W(s)P "Ep p—rs1 A(WD(T) —(s))P) f(s)ds. (2.9)
From (2.8) and (2.9), it follows that

Iy, "¥v(0) = Iy, "Yv(T).
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On the other hand, applying Dg;ﬂ’ to both sides of (2.6), and using lemmas 2.5, 2.6,

A

then applying Ig;(l_p) on result, it follows that

HDP AWy (1) — Av(t) = f(t).

3. Existence of solution

The existence and uniqueness theorems of solutions to \-Hilfer equation (1.1) with
period condition (1.2) are presented in this section. For our analysis, the following as-
sumptions should be valid.

(Hy) Let f : Jx R xR — R be a function such that f € Cy_, (J,R), for any v €
Ci—rw (J,R), and there exist positive constant % > 0 and @ € (0,1), such that

If(t,ug,v1) — f(t, w2, v2)l <Ol —wol + @ vy —val,
forany u;,vi e R,i=1,2and t € J.
(Ha) There exist o, i, k € C(J,IR) such that
[f(t,w,v)I < oft) + plt) [ul + k(t) v,

with k* = SUPy¢g k(t), w* = SUPy¢; u(t) and o* = SUPy¢; o(t) <1, forall te],
u,v e R.

(H3) The following inequality holds

Q=

(A+9) [ RI(r) B(p, )
Ao {r(p+l)(w(T)—w(0))P+ e

Theorem 3.1. Assume that f : ] x R x R — R is continuous, satisfies (Hy). If

G.:< RI'(r) +B(P,f)> (A4 1) (W(T) —(0))P
- \Tlp+1)  T(p) (1—x*)

then the \-Hilfer problem (1.1)-(1.2) has at least one solution in C;_, 4, (J,R).

((T) —w(on““’} <1

<1, 3.1)

Proof. According to lemma 2.13, the solution of the {-Hilfer problem (1.1)-(1.2) can be
expressed by the integral equation
-

v(t) = (tb(t)—lb(O))T_lﬂlj () (W(T) —h(s)PT

0
Ep,pfrJrl (}\(IP(T) —II)(S))p) j{v(s)ds

t
+J W (s) (W (1) — ()P Ep,p (AW (L) —b(s))P) Hyls)ds,

0
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where JH,, is the solution of the functional integral equation

T
Holt) = A((ﬂ)(t)—ll)(o))rlﬁjo V() (W(T) —(s)PT
Ep,pfrwtl}\(lb(-r) _w(s))pg{v(s)ds

+J0 V()W (L) —(s))P " Epp (AW (L) —b(s))P) va(S)dS>

T
+f <t, (W(t) —IP(O))rlfRL V() (W (T) = ()P
Ep,p7r+l ()\N)(T) - ll)(S))p) :}Cv(s)ds
t
+JO W (s)(W(t) = b(s))P " Epp (AW(t) —¥(s))P) jfv(S)dls,va(’t)) -

Here H, (t) = Av(t) + f(t, v(t), Hy (L)) .
Let us consider the operator §: C;_;, (J,R) — Ci_4, (J,R) defined as
T

v(t) — 9v(t):(1])(t)—1|)(0))rliRJ0 V' (s)(W(T) —w(s)P"
Epp—r1 (AM(T) = (s))P) Hy(s)ds
+JO P (s)(W(t) —(s)P Epp (MW(t) —(s))P) Hy(s)ds. (3.2)

Clearly that the operator § is well defined. Define a bounded closed convex set
ke ={veCiry LR): Ve, ,, <&},
of Banach space Cy_; y, (J,R) with & > 1%, 0 < 1 and

0—/

_ (R(ﬂ)(T) —P((0)P  (P(T) _lp(()))pﬂr) o

Mp—r+2) Mp+1) (1—x*)’

Step(1) We need to show that the operator G is continuous. Consider a sequence
{vnln_q such that v, — vin C;_14, (J,R). In view of lemmas 2.8 and 2.11, and for t € |
it follows that

|(W(t) =P (0)! " [Gvn (t) — Gv(t)]]

RI(r) B(p,1)
(F(p+1) r(p) )MMT)_MODP o =Vle, .,y 0m)

X L —r+1
" (r(P —1+2) - F(p+1)> (W(T) —(0))P
10, va (), 3 () = £, 90, 30 (Dlley om0 -

Since f is continuous and v,, — v as n — oo, we have

15V = Svnllc, ,, — 0asn — oco.

Thus, the operator § is continuous.
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Step(2) we well show that the operator § maps bounded sets into bounded sets in K.
By lemma 2.8, and for t € ], v € K¢, we have

|(W(t) —$(0)"Gv(t)]
R T / p—r
T o YT () 96 ) s
_ 1—r pt
4 ) —¥(0) l[WBHMU—w@DVﬂ%AQM& (3.3)
I'(p) 0
By (Hy), we have
T = A(t) + (L v(t), 56 (1)
AV + o(t) + q(t) (E) + p(t) [36, ()
o* 1 (A 1) (E)] + k¥ 9, (1)1,

NN

Since k* < 1, we get

3.4

Put (3.4) in (3.3), we get
|(W(t) = (0))"Gv(1)|

L 0t (A ) ()]
< oo ) e = S s
_ 1—r pt
LBV | (s) i) — (st S M g

< (ﬂwﬂ—wmm’(wM—¢MWHT> o*
= Mp—1+2) Fp+1) (1—k*)

<Rﬂﬂ +me0(w+mnwﬂwﬂmmwnu

Np+1) I'(p) (1—«*) Ci—rp (JR)
< w+oé
< &

which implies
a4l Ciryp(JR) <&

Thus, §: Kz — K¢, that is §K¢ is uniformly bounded.

Step(3) We need to show that the operator § maps bounded sets into equicontinuous
set of Ky.

For any v € K¢ and for ty,t; € J such that t; < t;. Then by using lemmas 2.8, 2.11,
we have

|(W(t2) = W(0)!"Gv(t2) — (W(t1) —$(0))'"Gv(t1))|

(
Epr (A(W(t2) —(0))P) — Ep,r (A(W(t1) —(0))P)
h 1—=Ep1 (AW(T) =(0))P)
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(W(T) —p(0))p ! n Fr)((T) —$(0))P (A + u*)a
MNp—r+2) FMp+1)(1—«*)

o +1—1 ok
e ((0lta) (0P — 1)~ 0(0))” 1)

M (+p)
o o) (1 & (0(82) = b(0)P = (b(t1) ~$(0))P)

B(p,r
2P (3(02) = $(0)) = (b(t2) —(0))"). (3.5
By Lagrange Mean value theorem, and Eq.(2.1) as t; — t;, the right-hand side of the
preceding inequality is not dependent on v and goes to zero and hence

[(W(t2) =¥(0)7"Gv(t2) — (W(t1) —$(0))'"Gv(t1)| = 0, V o —t1] = 0, v € K.
(3.6)
From the above steps, together with Arzela—Ascoli theorem, we infer that the operator
G is completely continuous. In the last step, we need to prove that the set

A={veCi_y(J,R):v=239v, forsomes € (0,1) }
is bounded set. Foreacht € ], letv € A, and v = $Gv for some & € (0,1) . Then we have
v(t) < Gv(t).
Hence, by virtue of step (2) and definitions of w and o, we obtain

Ve, . < ISvlle, ., 0r)
< wtolvie,, om) -

Since o < 1 it follows that

w

< <&

e, < oz <&
Thus, the set A is bounded. The Schaefer’s fixed point theorem shows that § has a
fixed point which is a solution of the problem (1.1)-(1.2). The proof is completed. O

Theorem 3.2. Assume that (Hi) — (Hs) hold. Then the Hilfer problem (1.1) -(1.2) has a
unique solution in C1_q, (J,R).

Proof. In view of Theorem (3.1) we have known that the operator G defined by 3.2 is well
defined and continuous.

Next, we need only to prove that G is a contraction map on Ci_, (J,R). For each
v,v* € Ci_ry (J,R) and for all t € ] with the help of lemmas 2.8 and 2.11, we have

| (W(t) =% (0)' T [Gv(t) — Gv* ()]

R T, -
Fp—r+1) )y V() (W(T) = ()P~ [FHy (s) — Hye(s) ds
(W(t) —p(0)) T Jt

V() (W(t) —W(s))P 1T (s) — FHye(s)] ds, (3.7)
I'(p) 0

_l’_




M.A. Almalahi, S.K. Panchal /Some existence and stability results for \-Hilfer FDEs 12

Since
1Ty (s) = FHux ()] < Aw(t) =v* (1) + [f(s,v(s), Hy(s)) —f(s,v*(s), Fy(s))]
(A+9) .
< Y vl (3.8)

Bringing (3.8) into (3.7), we obtain
|(W(t) = (0) " [Gv(t) — Gv* ()]

A+19) RI(1) B(p, )
Ao {r(p+1)(w(T)—w(O))P+ e

Ilv—v*| Crry(JR) S Qv =v| Ciorw IR)

(W(T) —w(onl—”p}

By (H3), the operator § is a contraction map. According to Banach contraction princi-
ple we conclude that the 1p-Hilfer problem (1.1)-(1.2) has a unique solutionin Cy_,  (J,R)
O

4. Ulam-Hyers and Ulam-Hyers-Rassias stabilities

In this section, we analyze the HU and HUR stabilities of solution for 1\-Hilfer fractional
implicit differential equation (1.1) with the periodic condition (1.2). Let € > 0. Consider
the problem (1.1)-(1.2) and below inequality

HDPPPx(t) —Ax(t) —He(t)| < e, teT. (4.1)
The following observations are taken from[18]

Definition 4.1. Problem (1.1)-(1.2) is Ulam-Hyers stable if there exists a real number
©¢ > 0 such that for each e > 0 there exists x € C;_,y (J,R) satisfies the inequality (4.1)
corresponding to a solution v € Cq_ (J,IR) of the problem (1.1)-(1.2) such that

x(t) —v(t)| < ofe, te].

Definition 4.2. Problem (1.1)-(1.2) is generalized Ulam-Hyers stable if there exists @ €
C(R4,Ry), @¢(0) = 0 such that for each solution x € C;_ 4, (], R) satisfies the inequality
(4.1) there exists a solution v € C1_ (J,R) of the problem (1.1)-(1.2) with

x(t) —v(t) < De(e),  te].

Definition 4.3. Problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable with respect to S €
Ci—ry (J,R) if there exists a real number @¢s > 0 such that for each ¢ > 0 and for
each solution x € C1_ (J,R) of the inequality

HDPPPx(t) — Ax(t) — Hi (1) < eS(t), te], (4.2)
there exists a solution v € C1_y, (J,R) of the problem (1.1)-(1.2) with

x(t) —v(t) < @rseS(t), te].
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Definition 4.4. Problem (1.1)-(1.2) is generalized Ulam-Hyers-Rassias stable with respect
to S € Ci_r4 (J,R) if there exists a real number @¢,s > 0 such that for each € > 0 and for
each solution x € C;_, 1, (J,R) of the inequality

HDPPPx(t) — Ax(t) — Hy(t)| < S(t), te],
there exists a solution v € Cy_ 4, (J,R) of the problem (1.1)-(1.2) with

x(t) =v(t)] < @1sS(t), te].

Remark 4.5. A function x € C1_, (J,IR) is a solution of the inequality (4.1) if and only if
there exist a function z € C;_, 4, (J,IR) such that

@ lz(t) < e, te];

(i) "DPP¥x(t) = Ax(t) + H(t) +2(1), te .

Lemma 4.6. Let x € C1_,4, (J,R) be a function satisfies the inequality (4.1). Then x satisfies
the following inequality

t

x(t) — Ny —J W (s)(W(t) —b(s)P " Ep p (MW (L) —b(s))P) Hyls)ds

0
R 1

s ehm—r+m+rm+n

-
N = (P(t) —w(O))r_lﬂzL V() (W(T) = ()P " Epp—rs1 AW(T) —=U(s))P) Hx(s)ds.
Proof. In view of remark 4.5 and theorem 3.1, we get
T

x(t) = (w(t)—lb(O))T_lfRJ () (WW(T) —h(s)P T

0

Ep,p—r+l ()\N)(T) —ﬂ)(S))p) %X(S)ds
T

+(b(t) —IIJ(O))TU%J Y (s)(W(T) —w(s))P"

0
Eppri1 AQD(T) —U(s))P) z(s)ds

t
+J P (s)(W(t) —b(s))P Epp (MW (L) —(s))P) H(s)ds

0

+J P (s)(W(t) —b(s))P " Epp (MW (L) —(s))P) 2(s)ds.

0
By using lemma 2.8, we have

s ehm—r+m+rm+n
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Theorem 4.7. Assume that (H1) and (Hs) are satisfied. Then Eq.(1.1) is Ulam-Hyers stable
and generalized Ulam-Hyers stable.

Proof. Letx € Ci_r (J,R) be a function satisfies the inequality (4.1) and letv € C1_,, (], R)
be a solution of the problem

HDPPy(t) —Av(t) = f(t,v(t), Hy (1))

11r51 I1 y(t) = l1r(r)1 I1 Ty (t)
t— t—

llm Il T ( ) — llm Il T ( )
t—T— t—T—

Using Lemma 2.13, we have

t

v(t) =Ny +J P () (W (1) = ()P Ep,p (AW (L) —(s))P) Hyls)ds,

0

T

Ny = (b(t) —w(on”ﬂej V()W (T) = ()P "Ep p—ri1 AWD(T) —h(s))P) Hy(s)ds,

0

and H,(s) = Av(t) + f(t,v(t), H,(t)). By our assumptions and Lemma 2.8, we can easily
conclude that N, = N, and hence

() =v(] = [x(0) =Ny = | ()L~ L) (A() —b(s))P) 90 s)c
< |t NJ}wwwmwuw*ammwmwmwwamm
+J:¢' ()P Ep p (A —h())P) 136,(5) — H(s) ds
eh _T+2 @1U]wﬂwﬂmmw
(?\ 1

By Lemma 2.12, we get

{ 1
“ITp—r+2) "Tlp+1)

Ep<“+ﬁhwﬂwﬂmmw)

x(t) —v(t)] <

1—-®
e e@-f

Thus for @1 = | iy + ey | (W) = W(s)PE, (T3 (W(T) ~$(0))7), we con-
clude that Eq. (1.1) is Ulam-Hyers stable. Choosing ®(e) = ©¢e, ®(0) = 0, we deduce
that Eq. (1.1) is generalized Ulam-Hyers stable. O

Now, we need to introduce the following hypothesis:
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(H4) There exists an increasing function S € Ci_,y (J,IR) and there exists ps, > 0 such
that forany t € ]
IHPS(t) < psS().

Remark 4.8. A function x € Cy_, 4, (J,R) is a solution of the inequality (4.2) if and only if
there exist a function z € C1_,y (J,R) (where z depends on solution x) such that

@) [z(t)| < eS(t) forallt €],
(i) MDPPYx(t) — Ax(t) = F(t) +2(t), te].

Theorem 4.9. Assume that (H1), (H3) and (Hy) are satisfied. Then the Eq.(1.1) is Ulam-
Hyers—Rassias stable with respect to S as well as generalized Ulam-Hyers—Rassias stable.

Proof. Let e > 0and x € C;_, (J,R) be a solution of the inequality
[MDFAPx(1) — () — ()| < eS(), te ). 4.3)

By the same way of lemma 4.6, (H4) and remark 4.8, we get

x(t) —Nx —J V()W (1) —b(s))P " Ep p (MW (L) —(s))P) Hls)ds

0

< elrpog 1] nssio)

where Hy(s) = Ax(t) + f(t,x(t), Hx(s)). Let v € Ci_r (J,R) be a unique solution of the
implicit fractional differential equation

HDPEYy(t) —Av(t) = f(t,v(t), Hu(t))
. 1—r _ . 11—y
g o= i o
lim I77%v(t) = lim 157 7%x(t).
t—T— t—T—

Using Lemma 2.13, we have

t
v(t) =Ny + JO P/ (s) (W (1) = ()P " Epp (MW (t) —(s))P) Hy(s)ds.
By Lemma 2.8, we can easily checked that N,, = Ny and hence

[x(t) —v(t)|

< x(t)—NX—J:w'(s)(w(t)—w(s))P—lEp,p (L) —($))P) 3¢ (5)ds
+E¢’(s)(w(t) ()P (MW (1) — W (5))P) 3 (5) — 36, ()] ds

<« [&+1] usS(Y
+f_+f)r(1mﬂw’(s)(w(t) —p(s))P 1 x(s) —vls)l ds (4.4
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Using Lemma 2.12, we get,

x(t) —v(t)]
< <[ w4 £ 1250 |
= €05 S(t),

where®fg_[ M= —l—l} s [14- Z [1 @)H} } that means

Ix(t) —v(t)] < e @rs S(H).

Thus Eq.(1.1) is Ulam-Hyers Rassias stable. Moreover, an argument similar to above in
the previous steps with putting e = 1 in Remark 4.8, we get

x(t) = v(t)] < @,sS(1).

This proves that the problem (1.1)-(1.2) is generalized Ulam-Hyers Rassias stable. O

5. An example
In this section, we give one example to illustrate our results.

Example 5.1. Conseder the following Hilfer fractional differential equation with integral
condition

1.
1,€

11, 1 t
e v(t)_—zlov(t)+2t0<1+|v(t)|+ Hpg v(t)D, te]:=(0,1]

(5.1)
Herep=1,B=1,T1=p+B—pB =13 A=—5,V(t) =e', ] =(0,1] and f(t,v(t), Hy(t)) =
L <1+Iv( )+ D3 tv(t)D.

Clearly the function (et — 1) 2 f(t,v(t), 3y (1)) is continuous on J, i.e. f(t,v(t), H(t)) €
C%,et (J,R),and forv € R, t € J, we have

|f(tlvl f}cv(t)) - f(t, X, %X(t)” < ;70 [|V —X| + |f}cv - i'}CXH .

Hence the first hypothesis (H;) is satisfied with 8 = @ = %. Also, the direct computation
shows that Q < 1. It follows from Theorem 3.2, that the problem (5.1) has a unique
solution on J.

Moreover, for v € R we find that

(6, v, 36, (1)) < (1+|v( )+

20

Thus the hypothesis (Hy) is satisfied with o(t) = u(t) = k(t) = % and o* = u* = k* =
SUpP¢co,1] 25 = Sup{0, 20} = 21—0 < 1. Now, by simple calculations, we get o < 1. Thus all
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conditions in Theorem 3.1 are satisfied, then, the problem (5.1) has at least one solution
on J.
Setting S(t) = (t) — P (0), by using lemma 2.6, we have

1t 1 \ (e—1)3

137°S(t) < — (W(t) —W(0))3 S(t) < — 2S¢ S(t),

or S(t) r(%)(lb() ¥(0))3 S(t) r) (t) = usS(t)
where pug = (er_(%))%

On the other hand, as shown in Theorem (4.9), fore =1, if x € C 1et (J,R) satisfies

HDEF (1) = Ax(t) = H(s)| S W(t) —(0), te],
there exists a unique solution v(t) € C Let (J,IR) such that

x(t) =v(t)] < @5 (W(t) —p(0)).

o0 n
where ¢ s 1= [% —|—1} Us [14— > [({‘fg) Hs} } >0.
n=1
It follows from Theorem (4.9) that the problem (5.1) is generalized Ulam-Hyers—
Rassias stable.

Conclusion

In this paper, we have successfully established the existence and uniqueness results of
fractional implicit differential equations with period condition involving {-Hilfer deriva-
tive. Moreover, we have discussed the different types of stability of solutions to such
equations in the weighted space Ci_, (J,R). In addition, an example is presented to
illustrate our results.
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