

Journal of Mathematical Analysis and Modeling jmam.sabapub.com ISSN 2709-5924

On B-covariant derivative of first order for some tensors in different spaces

ALAA A. ABDALLAH ^{a,*}, A. A. NAVLEKAR ^b, KIRTIWANT P. GHADLE ^c

^{a,c} Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431001, India

^b Department of Mathematics Pratishitan Mahavidyalaya, Paithan (M.S.) India

Received: 06 May 2021
 Accepted: 24 June 2021
 Published Online: 30 June 2021

Abstract

In this paper, we study the relationship between Cartan's second curvature tensor P_{jkh}^{i} and $(h)h\nu$ -torsion tensor C_{jk}^{i} in sense of Berwald. Moreover, we discuss the necessary and sufficient condition for some tensors which satisfy a recurrence property in BC-RF_n, P2-Like-BC-RF_n, P*-BC-RF_n and P-reducible-BC – RF_n.

Keywords: BC-Recurrent Finsler space, Cartan's second curvature tensor, (h)hv–torsion tensor, recurrence property.

1. Introduction

The concept of C-recurrent space in sense of Cartan and Berwald has been studying by Matsumoto [9] and Sarangi and Goswami [8], respectively. Mishra and Lodhi [2] discussed the properties of C^h -recurrent and C^{ν} -recurrent Finsler spaces, Mohammed [1] introduced P^h —recurrent space and studied the properties of P2-like space and P*-space in P^h-recurrent space, Pandey and Dikshit [12] discussed P*-and P-reducible Finsler space of recurrent curvature.

Let F_n be an n-dimensional Finsler space equipped with the metric function F(x, y) satisfying the request conditions [4]. The (h) hv-torsion tensor C_{jk}^i is the associate tensor of the tensor C_{ijk} which are defined by

a)
$$C_{ijk} y^{i} = C_{kij} y^{i} = C_{jki} y^{i} = 0,$$
 b) $C_{jk}^{i} y^{j} = C_{kj}^{i} y^{j} = 0,$
c) $C_{ik}^{h} = g^{hj}C_{ijk},$ d) $C_{ijk} = g_{hi}C_{jk}^{h},$ (1.1)
e) $C_{ji}^{i} = C_{j}$ and f) $C_{k} y^{k} = C,$

© 2020 SABA. All Rights Reserved.

^{*}Corresponding author: ala733.ala00@gmail.com

where C $_{ijk} = \frac{1}{2}\dot{\partial}_i g_{jk} = \frac{1}{4}\dot{\partial}_i\dot{\partial}_j \dot{\partial}_k F^2$.

Berwald covariant derivative $\mathsf{B}_k\mathsf{T}^i_j$ of an arbitrary tensor field T^i_j with respect to x^k given by

$$B_k T_j^i := \partial_k T_j^i - \left(\dot{\partial}_r T_j^i\right) G_k^r + T_j^r G_{rk}^i - T_r^i G_{jk}^r.$$

Berwald covariant derivative of the vector yⁱ vanish identically, i.e.

$$B_k y^i = 0. \tag{1.2}$$

But, in general, Berwald covariant derivative of the metric tensor g_{ij} does not vanish and given by

$$B_k g_{ij} = -2C_{ijk|h} y^h = -2y^h B_h C_{ijk} .$$
 (1.3)

The tensor P_{jkh}^{i} called hv- curvature tensor (Cartan's second curvature tensor) is positively homogeneous of degree -1 in y^{i} and defined by [4]

$$P_{jkh}^{i} := C_{kh|j}^{i} - g^{ir} C_{jkh|r} + C_{jk}^{r} P_{rh}^{i} - P_{jh}^{r} C_{rk}^{i}, \qquad (1.4)$$

which satisfies the relations

a)
$$P_{jkh}^{i} y^{j} = \Gamma_{jkh}^{*i} y^{j} = P_{kh}^{i} = C_{kh|r}^{i} y^{r}$$
 and b) $P_{ijkh} = g_{ir} P_{jkh'}^{r}$ (1.5)

where P_{ijkh} called *associate tensor of* $h\nu$ -*curvature tensor* and P_{kh}^i called ν ($h\nu$) – *torsion tensor* which satisfies

a)
$$P_{kh}^{i}y^{k} = 0$$
, b) $P_{rkh} = g_{ir}P_{kh}^{i}$ and c) $P_{kh}^{i} = P_{rkh}g^{ir}$, (1.6)

where P_{rkh} called associative tensor for v(hv)-torsion tensor.

P- Ricci tensor $P_{\rm jk}$, curvature vector $P_{\rm k}$ and curvature scalar P of Cartan's second curvature tensor given by

$$a)P_{jk} = P_{jki}^{i}, \qquad b) P_{k} = P_{ki}^{i} \quad and \quad c) P = P_{k} y^{k}, \qquad (1.7)$$

respectively.

Recently, Alaa et al. [5, 6, 7] discussed the necessary and sufficient condition for some tensors which satisfy the generalized recurrence property in $G(BP) - RF_n$ and studied some properties of P2-like space, P*-space and P-reducible space in it.

2. On BC-Recurrent Space

Matsumoto [9] introduced a Finsler space which the (h)hv-torsion tensor C_{jk}^{ι} satisfies the recurrence property in h– covariant derivative (Cartan's second kind covariant differentiation) and called it C^h-recurrent space. This space characterized by the conditions

a)
$$C_{kh|m}^{i} = \lambda_{m}C_{kh}^{i}$$
 and b) $C_{jkh|m} = \lambda_{m}C_{jkh}$, (2.1)

where C_{ijk} is associate tensor of C_{jk}^{i} .

Sarangi and Goswami [8] introduced a Finsler space for which the (h) hv-torsion tensor C_{jk}^{i} satisfies the recurrence property in sense of Berwald and called it C-recurrent space. Let us denote this space briefly by a BC-RF_n.

This space characterized by the conditions

a)
$$B_m C_{kh}^i = \lambda_m C_{kh}^i$$
 and b) $B_m C_{jkh} = \lambda_m C_{jkh}$. (2.2)

Let consider a $BC - RF_n$.

Using (2.1)(a) and (2.1)(b) in (1.4), we get

$$P_{jkh}^{i} = \lambda_{j}C_{kh}^{i} - \lambda^{i}C_{jkh} + C_{jk}^{r}P_{rh}^{i} - C_{rk}^{i}P_{jh'}^{r}$$
(2.3)

where $\lambda^i = \lambda_r g^{ir}$.

Taking B-covariant derivative for eq. (2.3) with respect to x^m , using (2.2)(a) and (2.2)(b) in the resulting equation, we get

$$B_{\mathfrak{m}}P_{jkh}^{i} = \lambda_{\mathfrak{m}} \left(\lambda_{j}C_{kh}^{i} - \lambda^{i}C_{jkh} + C_{jk}^{r}P_{rh}^{i} - C_{rk}^{i}P_{jh}^{r}\right) + \left(B_{\mathfrak{m}}\lambda_{j}\right)C_{kh}^{i} - \left(B_{\mathfrak{m}}\lambda^{i}\right)C_{jkh} + C_{jk}^{r}B_{\mathfrak{m}}P_{rh}^{i} - C_{rk}^{i}B_{\mathfrak{m}}P_{jh}^{r}.$$

Using eq. (2.3) in above equation, we get

$$B_{m}P_{jkh}^{i} = \lambda_{m}P_{jkh}^{i} + (B_{m}\lambda_{j})C_{kh}^{i} - (B_{m}\lambda^{i})C_{jkh} + C_{jk}^{r}B_{m}P_{rh}^{i} - C_{rk}^{i}B_{m}P_{jh}^{r}.$$
 (2.4)

This shows that $B_{\mathfrak{m}}P^{i}_{jkh}=\lambda_{\mathfrak{m}}P^{i}_{jkh}$ if and only if

$$(B_{m}\lambda_{j}) C_{kh}^{i} - (B_{m}\lambda^{i}) C_{jkh} + C_{jk}^{r} B_{m} P_{rh}^{i} - C_{rk}^{i} B_{m} P_{jh}^{r} = 0.$$
 (2.5)

Transvecting eq. (2.4) by g_{ir} , then using (1.3) and (1.5)(b), we get

$$B_{m}P_{rjkh} = \lambda_{m}P_{rjkh} + g_{ir}\{(B_{m}\lambda_{j})C_{kh}^{i} - (B_{m}\lambda^{i})C_{jkh} + C_{jk}^{r}B_{m}P_{rh}^{i} - C_{rk}^{i}B_{m}P_{jh}^{r}\} - 2P_{jkh}^{i}y^{s}B_{s}C_{irm}.$$
(2.6)

This shows that $B_m P_{rjkh} = \lambda_m P_{rjkh}$ if and only if

$$g_{ir}\{(B_{m}\lambda_{j}) C_{kh}^{i} - (B_{m}\lambda^{i}) C_{jkh} + C_{jk}^{r}B_{m}P_{rh}^{i} - C_{rk}^{i}B_{m}P_{jh}^{r}\} - 2P_{jkh}^{i}y^{s}B_{s}C_{irm} = 0.$$
(2.7)

Transvecting eq. (2.4) by y^{j} , using (1.5)(a), (1.2), (1.1)(a), (1.1)(b) and (1.6)(a), we get

$$B_{\mathfrak{m}}P_{kh}^{i} = \lambda_{\mathfrak{m}} P_{kh}^{i} + (B_{\mathfrak{m}}\lambda_{j}) C_{kh}^{i} y^{j}.$$
(2.8)

This shows that $B_m P_{kh}^i = \lambda_m P_{kh}^i$ if and only if

$$\left(\mathsf{B}_{\mathfrak{m}}\lambda_{j}\right)\mathsf{C}_{kh}^{i}\,\mathsf{y}^{j}=0. \tag{2.9}$$

Contracting the indices i and h in eq. (2.4), using (1.7)(a), (1.1)(e) and (1.7)(b), we get

$$B_{m}P_{jk} = \lambda_{m}P_{jk} + (B_{m}\lambda_{j})C_{k} - (B_{m}\lambda^{i})C_{jki} + C_{jk}^{r}B_{m}P_{r} - C_{rk}^{i}B_{m}P_{ji}^{r}.$$
 (2.10)

This shows that $B_m P_{jk} = \lambda_m P_{jk}$ if and only if

$$\left(B_{\mathfrak{m}}\lambda_{j}\right)C_{k}-\left(B_{\mathfrak{m}}\lambda^{i}\right)C_{jki}+C_{jk}^{r}B_{\mathfrak{m}}P_{r}-C_{rk}^{i}B_{\mathfrak{m}}P_{ji}^{r}=0.$$

$$(2.11)$$

Contracting the indices i and h in eq. (2.8), using (1.7)(b) and (1.1)(e), we get

$$B_{\mathfrak{m}}P_{k} = \lambda_{\mathfrak{m}}P_{k} + (B_{\mathfrak{m}}\lambda_{j}) C_{k} \mathfrak{Y}^{j}.$$

$$(2.12)$$

This shows that $B_m P_k = \lambda_m P_k$ if and only if

$$\left(\mathsf{B}_{\mathfrak{m}}\lambda_{j}\right)\mathsf{C}_{k}\;\mathsf{y}^{j}=0. \tag{2.13}$$

Transvecting eq. (2.12) by y^k , using (1.7)(c), (1.2) and (1.1)(f), we get

$$B_{m}P = \lambda_{m}P + (B_{m}\lambda_{j}) Cy^{j}. \qquad (2.14)$$

This shows that $B_m P = \lambda_m P$ if and only if

$$(B_m\lambda_j) C y^j = 0.$$
(2.15)

Consequently, from previous equations, we proved that, the behavior of P_{jkh}^{i} , P_{rjkh} , P_{kh}^{i} , P_{jk} , P_{k} and P as recurrent if and only if eqs. (2.5), (2.7), (2.9), (2.11), (2.13) and (2.15), respectively hold. Thus, we conclude:

Theorem 2.1. In BC-RF_n, Cartan's second curvature tensor P_{jkh}^{ι} , the associate curvature tensor P_{rjkh} , the torsion tensor P_{kh}^{ι} , the P-Ricci tensor P_{jk} , the curvature vector P_k and the curvature scalar P satisfy the recurrence property if and only if eqs. (2.5), (2.7), (2.9), (2.11), (2.13) and (2.15) respectively hold.

3. A P2-LikeBC-Recurrent Space

A P2-Like space is characterized by the condition[10]

$$P^{i}_{jkh} = \varphi_{j}C^{i}_{kh} - \varphi^{i}C_{jkh}, \qquad (3.1)$$

where φ_i and φ^i are non-zero covariant and contravariant vectors field, respectively.

Definition 3.1. The BC-recurrent space which is P2-Like space [satisfies the condition (3.1)], will be called a P2-Like BC-recurrent space and we will denote it briefly by a P2-Like-BC-RF_n.

Let consider a P2-Like-BC-RF_n. Taking B-covariant derivative for the condition (3.1) with respect to x^m , using (2.2)(a) and (2.2)(b) in the resulting equation, we get

$$B_{\mathfrak{m}}P_{jkh}^{i} = \lambda_{\mathfrak{m}}\left(\varphi_{j}C_{kh}^{i} - \varphi^{i}C_{jkh}\right) + \left(B_{\mathfrak{m}}\varphi_{j}\right)C_{kh}^{i} - \left(B_{\mathfrak{m}}\varphi^{i}\right)C_{jkh}.$$

Using the condition (3.1) in above equation, we get

$$B_{\mathfrak{m}}P^{i}_{jkh} = \lambda_{\mathfrak{m}}P^{i}_{jkh} + (B_{\mathfrak{m}}\varphi_{j})C^{i}_{kh} - (B_{\mathfrak{m}}\varphi^{i})C_{jkh}.$$
(3.2)

This shows that $B_m P_{jkh}^i = \lambda_m P_{jkh}^i$ if and only if

$$\left(\mathsf{B}_{\mathfrak{m}}\varphi_{j}\right)\mathsf{C}_{kh}^{i}-\left(\mathsf{B}_{\mathfrak{m}}\varphi^{i}\right)\mathsf{C}_{jkh}=0. \tag{3.3}$$

Transvecting eq. (3.2) by g_{ir} , using (1.5)(b) and (1.3), we get

$$B_{\mathfrak{m}}P_{rjkh} = \lambda_{\mathfrak{m}}P_{rjkh} + g_{ir}\{(B_{\mathfrak{m}}\varphi_{j})C_{kh}^{i} - (B_{\mathfrak{m}}\varphi^{i})C_{jkh}\} - 2P_{jkh}^{i}y^{s}B_{s}C_{irm}.$$
 (3.4)

This shows that $B_m P_{rjkh} = \lambda_m P_{rjkh}$ if and only if

$$g_{ir}\{(B_{m}\phi_{j})C_{kh}^{i} - (B_{m}\phi^{i})C_{jkh}\} - 2P_{jkh}^{i}y^{s}B_{s}C_{irm} = 0.$$
(3.5)

Contracting the indices i and h in eq. (3.2), using (1.7)(a) and (1.1)(e), we get

$$B_{\mathfrak{m}}P_{jk} = \lambda_{\mathfrak{m}}P_{jk} + (B_{\mathfrak{m}}\varphi_{j})C_{k} - (B_{\mathfrak{m}}\varphi^{i})C_{jki}.$$
(3.6)

This shows that $B_m P_{jk} = \lambda_m P_{jk}$ if and only if

$$\left(\mathsf{B}_{\mathfrak{m}}\varphi_{j}\right)\mathsf{C}_{k}-\left(\mathsf{B}_{\mathfrak{m}}\varphi^{i}\right)\mathsf{C}_{jki}=0. \tag{3.7}$$

Consequently, from previous equations, we proved that, the behavior of P_{jkh}^i , P_{rjkh} and P_{jk} as recurrent if and only if eqs. (3.3), (3.5) and (3.7), respectively hold. Thus, we conclude

Theorem 3.2. In P2-Like-BC-RF_n, Cartan's second curvature tensor P_{jkh}^{i} , the associate curvature tensor P_{rjkh} and the P-Ricci tensor P_{jk} satisfy the recurrence property if and only if eqs. (3.3), (3.5) and (3.7), respectively hold.

4. A P*- BC-Recurrent Space

A P*-Finsler space is characterized by the condition [3]

$$P_{kh}^{i} = \varphi C_{kh}^{i}. \tag{4.1}$$

Definition 4.1. The BC-recurrent space which is P*-space [satisfies the condition (4.1)], will be called a P*-BC-recurrent space and we will denote it briefly by a P*-BC-RF_n.

Let consider a P*-BC-RF_n. Taking B-covariant derivative for the condition (4.1) with respect to x^m , using (2.2)(a) in the resulting equation, we get

$$B_{\mathfrak{m}}P_{k\mathfrak{h}}^{\mathfrak{i}} = (B_{\mathfrak{m}}\varphi)C_{k\mathfrak{h}}^{\mathfrak{i}} + \varphi\lambda_{\mathfrak{m}}C_{k\mathfrak{h}}^{\mathfrak{i}}.$$

Using the condition (4.1) in above equation, we get

$$B_{\mathfrak{m}}P_{k\mathfrak{h}}^{i} = \lambda_{\mathfrak{m}}P_{k\mathfrak{h}}^{i} + (B_{\mathfrak{m}}\varphi)C_{k\mathfrak{h}}^{i}.$$
(4.2)

This shows that $B_m P_{kh}^i = \lambda_m P_{kh}^i$ if and only if

$$(\mathsf{B}_{\mathfrak{m}}\varphi)\,\mathsf{C}^{\iota}_{kh}=0. \tag{4.3}$$

Transvecting eq. (4.2) by g_{ij} , using (1.6)(b), (1.3) and (1.1)(d), we get

$$B_{\mathfrak{m}}P_{jkh} = \lambda_{\mathfrak{m}}P_{jkh} + (B_{\mathfrak{m}}\varphi)C_{jkh} + 2P_{kh}^{i}y^{s}B_{s}C_{ij\mathfrak{m}}.$$
(4.4)

This shows that $B_m P_{jkh} = \lambda_m P_{jkh}$ if and only if

$$(B_{\mathfrak{m}}\varphi)C_{jkh} + 2P_{kh}^{i}y^{s}B_{s}C_{ij\mathfrak{m}} = 0.$$

$$(4.5)$$

Contracting the indices i and h in eq. (4.2), using (1.7)(b) and (1.1)(e), we get

$$B_{\mathfrak{m}}P_{k} = \lambda_{\mathfrak{m}}P_{k} + (B_{\mathfrak{m}}\varphi)C_{k}.$$
(4.6)

This shows that $B_m P_k = \lambda_m P_k$ if and only if

$$(\mathsf{B}_{\mathfrak{m}}\varphi)\,\mathsf{C}_{\mathsf{k}}=0. \tag{4.7}$$

Transvecting eq. (4.6) by y^k , using (1.7)(c) and (1.1)(f), we get

$$B_{\mathfrak{m}}P = \lambda_{\mathfrak{m}}P + (B_{\mathfrak{m}}\varphi)C. \tag{4.8}$$

This shows that $B_m P = \lambda_m P$ if and only if

$$(B_m \varphi) C = 0.$$
 (4.9)

Consequently, from previous equations, we proved that, the behavior of P_{kh}^i , P_{jkh} , P_k and P as recurrent if and only if eqs. (4.3), (4.5), (4.7) and (4.9), respectively hold. Thus, we conclude:

Theorem 4.2. In P*-BC-RF_n, the torsion tensor P_{kh}^{i} , the associate curvature tensor P_{jkh} , the curvature vector P_{k} and the curvature scalar P satisfy the recurrence property if and only if eqs. (4.3), (4.5), (4.7) and (4.9), respectively hold.

5. A P-Reducible-BC-Recurrent Space

A P- reducible space is characterized by the condition [11, 13]

$$P_{jkh} = \lambda C_{jkh} + \varphi \left(h_{jk}C_h + h_{kh}C_j + h_{hj}C_k \right), \qquad (5.1)$$

where λ and ϕ are scalar vectors positively homogeneous of degree one in y^j and h_{jk} is the angular metric tensor.

Definition 5.1. The BC-recurrent space which is P -reducible space [satisfies the condition (5.1)], will be called P-reducible-BC-recurrent space and we will denote it briefly by a P-reducible-BC-RF_n.

Transvecting the condition (5.1) by g^{ij} using (1.6)(c) and (1.1)(c), we get

$$P_{kh}^{i} = \lambda C_{kh}^{i} + \varphi \left(h_{k}^{i} C_{h} + h_{kh} C^{i} + h_{h}^{i} C_{k} \right), \qquad (5.2)$$

where $h_k^i = g^{ij}h_{jk}$ and $C^i = g^{ij}C_j$. Let consider a P-reducible-BC-RF_n.

Taking B-covariant derivative for the condition (5.2) with respect to x^m , using (2.2)(a) in the resulting equation, we get

$$B_{\mathfrak{m}}P_{kh}^{i} = \lambda\lambda_{\mathfrak{m}}C_{kh}^{i} + (B_{\mathfrak{m}}\lambda)C_{kh}^{i} + B_{\mathfrak{m}}\left[\varphi\left(h_{k}^{i}C_{h} + h_{kh}C^{i} + h_{h}^{i}C_{k}\right)\right].$$

Using the condition (5.2) in above equation, we get

$$\begin{split} B_{m}P_{kh}^{i} &= \lambda_{m}P_{kh}^{i} - \lambda_{m}\varphi\left(h_{k}^{i}C_{h} + h_{kh}C^{i} + h_{h}^{i}C_{k}\right) + \left(B_{m}\lambda\right)C_{kh}^{i} \\ &+ B_{m}\left[\varphi\left(h_{k}^{i}C_{h} + h_{kh}C^{i} + h_{h}^{i}C_{k}\right)\right]. \end{split}$$

This shows that

$$B_{\mathfrak{m}}\left[\varphi\left(h_{k}^{i}C_{h}+h_{kh}C^{i}+h_{h}^{i}C_{k}\right)\right]=\lambda_{\mathfrak{m}}\varphi\left(h_{k}^{i}C_{h}+h_{kh}C^{i}+h_{h}^{i}C_{k}\right)-\left(B_{\mathfrak{m}}\lambda\right)C_{kh}^{i}$$
(5.3)

if and only if $B_m P_{kh}^i = \lambda_m P_{kh}^i$. Taking B- covariant derivative for the condition (5.1) with respect to x^m , using (2.2)(b) in the resulting equation, we get

$$B_{\mathfrak{m}}P_{jkh} = \lambda\lambda_{\mathfrak{m}}C_{jkh} + (B_{\mathfrak{m}}\lambda)C_{jkh} + B_{\mathfrak{m}}\left[\varphi\left(h_{jk}C_{h} + h_{kh}C_{j} + h_{hj}C_{k}\right)\right].$$

Using the condition (5.1) in above equation, we get

$$B_{m}P_{jkh} = \lambda_{m}P_{jkh} - \lambda_{m}\varphi \left(h_{jk}C_{h} + h_{kh}C_{j} + h_{hj}C_{k}\right) + (B_{m}\lambda)C_{jkh} -B_{m}\left[\varphi \left(h_{jk}C_{h} + h_{kh}C_{j} + h_{hj}C_{k}\right)\right].$$

This shows that

$$B_{\mathfrak{m}}\left[\varphi\left(h_{jk}C_{h}+h_{kh}C_{j}+h_{hj}C_{k}\right)\right]=\lambda_{\mathfrak{m}}\varphi\left(h_{jk}C_{h}+h_{kh}C_{j}+h_{hj}C_{k}\right)-\left(B_{\mathfrak{m}}\lambda\right)C_{jkh}$$
(5.4)

if and only if $B_m P_{jkh} = \lambda_m P_{jkh}$.

Consequently, we proved that, Berwald's covariant derivative of the first order for the tensors $\varphi(h_k^i C_h + h_{kh} C^i + h_h^i C_k)$ and $\varphi(h_{jk} C_h + h_{kh} C_j + h_{hj} C_k)$ satisfy eqs. (5.3) and (5.4) if and only if the torsion tensor P_{kh}^i and the associate torsion tensor P_{jkh} behave as recurrent, respectively hold. Thus, we conclude the following theorem:

Theorem 5.2. In P-reducible-BC-RF_n, Berwald's covariant derivative of the first order for the tensors φ ($h_{jk}C_h + h_{kh}C_j + h_{hj}C_k$) and φ ($h_k^iC_h + h_{kh}C^i + h_h^iC_k$) are given by eqs. (5.3) and (5.4) if and only if the torsion tensor P_{kh}^i and the associate torsion tensor P_{jkh} satisfy the recurrence property, respectively hold.

6. Conclusion

We obtained the necessary and sufficient condition for Cartan's second curvature tensor P_{jkh}^{i} , associate curvature tensor P_{ijkh} , torsion tensor P_{kh}^{i} , P-Ricci tensor P_{jk} , curvature vector P_k and scalar curvature P which satisfy the recurrence property in BC-RF_n, P2-Like -BC-RF_n, P*-BC-RF_n and P-reducible -BC-RF_n, we got the relationship between Cartan's second curvature tensor P_{ikh}^{i} and (h) hv-torsion tensor C_{ik}^{i} in sense of Berwald.

References

- [1] Mohammed AH (2016). On study of P^hrecurrent curvature tensors in different types of Finsler space. M.Sc. Thesis, University of Aden, (Aden) (Yemen).
- [2] Mishra CK, Lodhi G (2008). On C^h-recurrent and C^{ν} recurrent Finsler spaces of second order. Int. Jour. Contemp. Math. Sci., **3**(17): 801-810.
- [3] Izumi H (1976). On P*-Finsler spaces I. Memo. Defence Acad. (Japan), 16: 133-138.
- [4] Rund H (1981). The differential geometry of Finsler spaces. Springer-Verlag, Berlin Göttingen, (1959);
 2nd Edit. (in Russian), Nauka, (Moscow).
- [5] Alaa AA, Navlekar AA, Ghadle KP (2019). The necessary and sufficient condition for some tensors which satisfy a generalized BP-recurrent Finsler space. International Journal of Scientific and Engineering Research, 10(11): 135-140.
- [6] Alaa AA, Navlekar AA, Ghadle KP (2019). *Special types of generalized BP-recurrent spaces*. Journal of Computer and Mathematical Sciences, **10**(5): 972-979.
- [7] Alaa AA, Navlekar AA, Ghadle KP (2019). On P*-and P-reducible of Cartan's second curvature tensor. Journal of Applied Science and computation, VI(XI): 13-24.
- [8] Sarangi KC, Goswami A (2006). On C-recurrent Finsler space. Journal of International Academy of physical Science, 10: 17-24.
- [9] Matsumoto M (1971). On h-isotropic and C^h-recurrent Finsler. J. Math. Kyoto Univ. 11: 1-9.
- [10] Matsumoto M (1971). On Finsler spaces with curvature tensor of some special forms. Tensor N.S. 22: 201-204.
- [11] Dwivedi PK (2011). P-reducible Finsler spaces and applications. int. journal of Math. Analysis, 5(5): 223-229.
- [12] Pandey PN, Dikshit S (1998). On P*- and P-ruducible Finsler spaces of recurrent curvature. Journal of International Academy of Physical Science, **2**: 11-17.
- [13] Saxena PS (2013). A study of P*-ruducible Finsler space with Douglas tensor. Journal of International Academy of physical Science, **17**(3): 277-285.