A note on the qualitative behavior of some nonlinear local improper conformable differential equations
Keywords:
Bounded, L2-solutions, square-integrable, asymptotic behaviorAbstract
In this paper, we present two qualitative results concerning the solutions of nonlinear generalized differential equations, with a local derivative defined by the authors in previous works. The first result covers the boundedness of solutions while the second one discusses when all the solutions are in L$^{2}$.
References
N. Aguila Camacho, M. A. Duarte Mermoud and J. A. Gallegos-Lyapunov
functions for fractional order systems, Commun Nonlinear Sci Numer Simulat
(2014) 2951-2957.
N. Aguila Camacho, M. A. Duarte Mermoud-Boundedness of the solutions
for certain classes of fractional differential equations with application to
adaptive systems, ISA Transactions 60 (2016) 82-88.
D. Baleanu, O. G. Mustafa, R. P. Agarwal, Asymptotically linear solutions
for some linear fractional differential equations, Abstract Appl. Anal.
(2010), Article ID 865139.
Bayram, M., Adiguzel, H. & Ogrekci, S. (2015). Oscillation of fractional
order functional differential equations with nonlinear damping, Open Phys.
; 13:377-382 DOI 10.1515/phys-2015-0053
Mustafa Bayram, Hakan Adiguzel, Aydin Secer, Oscillation criteria for
nonlinear fractional differential equation with damping term, Open Phys.
; 14:119-128
D. Baleanu, A. Fernandez, On Fractional Operators and Their Classi cations,
Mathematics 2019, 7, 830; doi:10.3390/math7090830
Mustafa Bayram, Aydin Secer, Hakan Adiguzel, On the oscillation of fractional
order nonlinear differential equations, Sakarya Universitesi Fen Bilimleri
Enstitusu Dergisi, 21 (6), 1512-1523, 2017
Ahmet Bekir, Ozkan Guner, Adem C. Cevikel, Fractional Complex Transform
and exp-Function Methods for Fractional Differential Equations, Abstract
and Applied Analysis Volume 2013, Article ID 426462, 8 pages
http://dx.doi.org/10.1155/2013/426462
Q. Feng, Oscillatory criteria for two fractional differential equations,
WSEAS Transactions on Mathematics, Volume 13, 2004, 800-810.
Q. Feng and F. Meng, Oscillation of solutions to nonlinear forced fractional
differential equations, Electronic J. of Differential Equations Vol.
(2013), No. 169, 1-10.
V. Ganesan, M. Sathish Kumar, Oscillation theorems for fractional order
neutral differential equations, International J. of Math. Sci. Engg. Appls.
(IJMSEA) ISSN 0973-9424, Vol. 10 No. III (December, 2016), 23-37
J. Baranowski, M. Zagorowska; W. Bauer; T. Dziwinski and P. Piatek,
Applications of Direct Lyapunov Method in Caputo Non-Integer Order
Systems, Electronika IR Electrotechnika, ISSN 1392-1215, Vol. 21, No. 2,
N. Boudonov, Qualitative theory of ordinary differential equations, Universidad
de la Habana, Cuba, no dated (Spanish).
T. A. Burton, Fractional differential equations and Lyapunov functionals,
Nonlinear Anal. 74(2011), 5648-5662.
D. Chen, R. Zhang, X. Liu, X. Ma, Fractional order Lyapunov stability
theorem and its applications in synchronization of complex dynamical networks,
Commun Nonlinear Sci Numer Simulat 19 (2014) 4105-4121.
H. Delavari, D. Baleanu, J. Sadati, Stability analysys of Caputo fractional
order nonlinear systems revisited, Nonlinear Dyn (2012) 67:2433-2439.
W. Deng, Smoothness and stability of the solutions for nonlinear fractional
differential equations, Nonlinear Anal. 72, 2010, 1768-1777.
M. A. Duarte Mermoud, N. Aguila Camacho, J. A. Gallegos, R. Castro
Linares, Using general quadratic Lyapunov functions to prove Lyapunov
uniform stability for fractional order systems, Commun Nonlinear Sci Numer
Simulat 22 (2015) 650-659.
Q. Feng, Oscillatory criteria for two fractional differential equations,
WSEAS TRANSACTIONS on MATHEMATICS, Volume 13, 2004, 800-
Q. Feng, F. Meng, Interval oscillation criteria for a class of nonlinear fractional
differential equations, WSEAS Transactions on Mathematics, 12(5),
, 564-571.
P. M. Guzmán, L. M. Lugo Motta Bittencurt, J. E. Nápoles Valdes, A note
on stability of certain Lienard fractional equation, International Journal of
Mathematics and Computer Science, 14 (2019): 301 - 315.
J. B. Hu, Guo Ping Lu, Shi Bing Zhang, Ling Dong Zhao, Lyapunov stability
theorem about fractional system without and with delay, Commun
Nonlinear Sci Numer Simulat 20 (2015) 905{913.
Jumarie, G. (2006). Modi ed Riemann-Liouville derivative and fractional
Taylor series of nondifferentiable functions further results, Comput. Math.
Appl., Vol. 51, Issues 9-10, pp. 1367-1376.
A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional
Differential Equations, in Math. Studies, North-Holland, New York,
V. Lakshmikantham, S. Leela, M. Sambandham, Lyapunov theory for fractional
di erential equations, Commun. Appl. Anal. 12(2008), 365-376.
Z. B. Li, J. H. He, Fractional complex transform for fractional differential
equations, Math. Comput. Appl. 15, 970-973 (2010).
Y. Li, Y. Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic
systems: Lyapunov direct method and generalized Mittag Leffler
stability, Comput. Math. Appl. 59(2010), 1810-1821.
Liu, C. S. (2015). Counterexamples on Jumaries two basic fractional calculus
formulae, Commun Nonlinear Sci Numer Simulat, Vol.22, No.1-3, 92-94.
DOI: 10.1016/j.cnsns.2014.07.022
A. M. S. Mahdy, G. M. A. Marai, Fractional Complex Transform for Solving
the Fractional Differential Equations, Global Journal of Pure and Applied
Mathematics, Volume 14, Number 1 (2018), pp. 17-37
K.S. Miller, An Introduction to Fractional Calculus and Fractional Di erential
Equations, J. Wiley and Sons, New York, 1993.
J. E. Nápoles V., On the oscillatory character of some no conformable
fractional differential equation, submited.
J. E. Nápoles V., Oscillatory criteria for some no conformable fractional
differential equation with damping, Discontinuity, Nonlinearly and Complexity,
to appear.
J. E. Nápoles V., L. Lugo Motta, P. M. Guzman Guillermo Langton, and
Julian Medina, A New de nition of a fractional derivative of local type,
Journal of Mathematical Analysis, 9(2) (2018), 88-98.
K. Oldham, J. Spanier, The Fractional Calculus, Theory and Applications
of Di erentiation and Integration of Arbitrary Order, Academic Press,
USA, 1974.
I. Podlubny, Fractional Differential Equations, Academic Press, USA, 1999.
Huizeng Qin, Bin Zheng, Oscillation of a Class of Fractional Differential
Equations with Damping Term, The Scienti cWorld Journal Volume 2013,
Article ID 685621, 9 pages http://dx.doi.org/10.1155/2013/685621
G. Sansone, R. Conti, Nonlinear differential equations, MacMillan, New
York, 1964.
J. C. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, A Lyapunov approach
to the stability of fractional differential equations, Signal Process.
, 2011, 437-445.
C. Vargas De León, Volterra-type Lyapunov functions for fractional-order
epidemic systems, Commun Nonlinear Sci Numer Simulat 24 (2015) 75-85.
Elsayed M.E. Zayed, Yasser A. Amer, Reham M.A. Shohib, The fractional
complex transformation for nonlinear fractional partial differential equations
in the mathematical physics, Journal of the Association of Arab Universities
for Basic and Applied Sciences (2016) 19, 59-69
Published
How to Cite
Issue
Section
Copyright (c) 2020 JUAN EDUARDO NAPOLES VALDES, Paulo M. Guzmán, Luciano M. Lugo Motta Bittencurt

This work is licensed under a Creative Commons Attribution 4.0 International License.
