Some weighted Simpson type inequalities for differentiable s–convex functions and their applications
Some weighted Simpson type inequalities
Keywords:
Simpson inequality, weighted function, s-convex functions, Holder inequality, weighted Simpson quadrature formulaAbstract
In this study, by using a new identity we establish some new Simpson type inequalities for differentiables–convex functions in the second sense. Various special cases have been studied in details. Also, in order to illustrate the efficient of our main results, some applications to special means and weighted Simpson quadrature formula are given. The obtained results generalize and refine certain known results. At the end, a brief conclusion is given as well.
References
bibitem{9}
Pev{c}ari'{c}, J.E.; Proschan, F.; Tong, Y.L. Convex
functions, partial orderings, and statistical applications. emph{Math. Sci. Eng.} {bf 1992}, emph{187}.
bibitem{3}
Breckner, W.W. Stetigkeitsaussagen f"{u}r eine Klasse
verallgemeinerter konvexer Funktionen in topologischen linearen R"{a}umen.
(German) emph{Publ. Inst. Math. (Beograd) (N.S.)} {bf 1978}, emph{23}(37), 13--20.
bibitem{2}
Awan, M.U.; Noor, M. A.; Mihai, M.V.; Noor, K.I.; Khan, A.G.
Some new bounds for Simpson's rule involving special functions via harmonic $%
h$-convexity. emph{J. Nonlinear Sci. Appl.} {bf 2017}, emph{10}(4), 1755--1766.
bibitem{4}
Chiheb, T.; Boumaza, N.; Meftah, B. Some new Simpson-like type
inequalities via prequasi-invexity. emph{Transylv. J. Math. Mech.} {bf 2020}, emph{12}(1), 1--10.
bibitem{5}
Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson's
inequality and applications. emph{J. Inequal. Appl.} {bf 2000}, emph{5}, 533--579.
bibitem{6}
Kashuri, A.; Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.; Chu, Y.M. New Simpson type integral inequalities for $s$--convex functions and
their applications. emph{Math. Probl. Eng.} {bf 2020}, Article ID 8871988, 1--12.
bibitem{8}
Noor, M.A.; Noor, K.I.; Awan, M.U. Simpson-type inequalities
for geometrically relative convex functions. emph{Ukrainian Math. J.} {bf 2018}, emph{70}(7), 1145--1154.
bibitem{12}
Sarikaya, M.Z.; Budak, H.; Erden, S. On new inequalities of
Simpson's type for generalized convex functions. emph{Korean J. Math.} {bf 2019}, emph{27}(2), 279--295.
bibitem{13}
Set, E.; "{O}zdemir, M.E.; Sarikaya, M.Z. On new
inequalities of Simpson's type for quasi-convex functions with applications.
emph{Tamkang J. Math.} {bf 2012}, emph{43}(3), 357--364.
bibitem{1}
Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of
Simpson's type for $s$--convex functions with applications. emph{RGMIA Res. Rep.
Coll.} {bf 2009}, emph{12}(4), Article 9.
bibitem{10}
Sarikaya, M.Z.; Set, E.; "{O}zdemir, M.E. On new
inequalities of Simpson's type for convex functions. emph{RGMIA Res. Rep.
Coll.} {bf 2010}, emph{13}(2), Article 2.
bibitem{11}
Sarikaya, M.Z.; Set, E.; "{O}zdemir, M.E. On new inequalities
of Simpson's type for $s$--convex functions. emph{Comput. Math. Appl.} {bf 2010}, emph{60}(8), 2191--2199.
bibitem{7}
Matl oka, M. Weighted Simpson type inequalities for $h$--convex
functions. emph{J. Nonlinear Sci. Appl.} {bf 2017}, emph{10}(11), 5770--5780.
Published
How to Cite
Issue
Section
Copyright (c) 2021 Artion Kashuri, Badreddine Meftah, Pshtiwan Othman Mohammed

This work is licensed under a Creative Commons Attribution 4.0 International License.