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Abstract
In this paper, β− ∆ fractional derivative and β− ∆ fractional integral on time scales are defined and

their basic properties are obtained. Then, β−∇ fractional calculus on arbitrary time scales is introduced.
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1. Introduction

The calculus on time scales was introduced by Aulbach and Hilger [1], in order to
unify and generalize continuous and discrete analysis. A nonempty closed subset of real
numbers R is called a time scale T. Some basic definitions and theorems on time scales
can be found in the book [2] and another excellent source on time scales is the book
[3]. The study of time scales has led to many important applications, e.g. in the study
of epidemic models, insect population models, heat transfer, and neural networks [4].
Fractional calculus is a generalization of ordinary differentiation and integration to arbi-
trary (noninteger) order. Fractional differential equations arise in many engineering and
scientific disciplines as the mathematical models of systems and processes in the fields
of physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rhe-
ology, etc.; see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Abdon Atangana suggested
the β−fractional derivative recently in [17, 18, 19]. The suggested version fulfills many
characteristics that have been utilized to simulate various physical issues and have served
as limitations for fractional derivatives. The beta derivative of f of order α is defined as

Dα
t (f)(t) = limε→0

f[t+ ε(t+ 1
Γ(α))

1−α] − f(t)

ε
, α ∈ (0, 1], t > 0.

The idea to join the fractional calculus and the calculus on time scales was born with
the Ph.D. thesis of Bastos [20]. After the inception of the topic, a number of papers were
published see [21, 22, 23, 24, 25, 26]. In this study, we will give the concept of β−
fractional derivative and integral on time scales. Our new calculus unifies and generalizes
the time scale calculus and the β− fractional calculus.
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2. β−∆− Fractional Derivative

Definition 2.1. Assume that α ∈ (0, 1], T is a time scale and f : T → R is a function. For
all ε > 0, if there is a neighborhood U of t ∈ Tk (t > 0) such that

|[f(σ(t)) − f(s)](t+
1

Γ(α)
)1−α − βT∆

α (f)(t)(σ(t) − s)| ⩽ ε|σ(t) − s|, ∀s ∈ U,

the β−∆− fractional derivative of f of order α at t is defined by the number βT∆
α (f)(t).

β−∆− fractional derivative of f of order α at 0 is defined by βT∆
α (f)(0) = limt→0+

βT∆
α (f)(t).

Note that when α = 1, we have βT∆
α (f)(t) = f∆(t) and if T = R, then βT∆

α (f)(t) =
Dα

t (f)(t) is the β− fractional derivative of f of order α.

Theorem 2.2. Suppose that α ∈ (0, 1], T is a time scale, t ∈ Tk (t > 0) and f : T → R is a
function. Then, we have the following properties.

(i) If f has β−∆− fractional derivative of order α at t, then f is continuous at t.
(ii) Let f be continuous at t and t be right-scattered. Then, f has β−∆− fractional deriva-

tive of order α at t and we have βT∆
α (f)(t) =

f(σ(t))−f(t)
µ(t) (t+ 1

Γ(α))
1−α.

(iii) When t is right-dense, f has β− ∆− fractional derivative of order α at t iff the limit
lims→t

f(t)−f(s)
t−s (t+ 1

Γ(α))
1−α exists as a finite number. Then, we have

βT∆
α (f)(t) = lim

s→t

f(t) − f(s)

t− s
(t+

1
Γ(α)

)1−α.

(iv) If f has β−∆− fractional derivative of order α at t, then we get

f(σ(t)) = f(t) + µ(t)(t+
1

Γ(α)
)α−1 βT∆

α (f)(t).

Proof. (i) If f has β−∆− fractional derivative of order α at t, given any ε > 0, there is
a neighborhood U = (t− δ, t+ δ)∩ T of t such that

|[f(σ(t)) − f(r)](t+
1

Γ(α)
)1−α − βT∆

α (f)(t)(σ(t) − r)| ⩽ ε∗|σ(t) − r|, ∀r ∈ U,

where ε∗ = ε[2µ(t) + δ+ |βT∆
α (f)(t)|]−1(t+ 1

Γ(α))
1−α. For every r ∈ U ∩ (t− ε∗, t+

ε∗) we have
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|f(t) − f(r)| ⩽ |f(σ(t)) − f(r) − βT∆
α (f)(t)(σ(t) − r)(t+

1
Γ(α)

)α−1|

+|f(σ(t)) − f(t) − βT∆
α (f)(t)(σ(t) − t)(t+

1
Γ(α)

)α−1|

+|t− r||βT∆
α (f)(t)||t+

1
Γ(α)

|α−1

⩽ ε∗|σ(t) − r|(t+
1

Γ(α)
)α−1 + ε∗µ(t)(t+

1
Γ(α)

)α−1

+ε∗|βT∆
α (f)(t)|(t+

1
Γ(α)

)α−1

⩽ ε∗[µ(t) + |t− r|+ µ(t) + |βT∆
α (f)(t)|](t+

1
Γ(α)

)α−1

< ε∗[2µ(t) + δ+ |βT∆
α (f)(t)|](t+

1
Γ(α)

)α−1

= ε.

(ii) Suppose that t is right-scattered and f is continuous at t. Since f is continuous at t,
we obtain

lim
s→t

f(σ(t)) − f(s)

σ(t) − s
(t+

1
Γ(α)

)1−α =
f(σ(t)) − f(t)

µ(t)
(t+

1
Γ(α)

)1−α.

Therefore, given ε > 0, there exists a neighborhood U of t such that

|
f(σ(t)) − f(s)

σ(t) − s
(t+

1
Γ(α)

)1−α −
f(σ(t)) − f(t)

µ(t)
(t+

1
Γ(α)

)1−α| ⩽ ε

for all s ∈ U. Then we have

|[f(σ(t)) − f(s)](t+
1

Γ(α)
)1−α −

f(σ(t)) − f(t)

µ(t)
(t+

1
Γ(α)

)1−α(σ(t) − s)| ⩽ ε|σ(t) − s|

and therefore we obtain βT∆
α (f)(t) =

f(σ(t))−f(t)
µ(t) (t+ 1

Γ(α))
1−α.

(iii) Assume t is right-dense and f has β−∆− fractional derivative of order α at t. For
every ε > 0, there is a neighborhood U of t such that

|[f(σ(t)) − f(s)](t+
1

Γ(α)
)1−α − βT∆

α (f)(t)(σ(t) − s)| ⩽ ε|σ(t) − s|, ∀s ∈ U.

Taking σ(t) = t, for each s ∈ U and s ̸= t we get

|
f(t) − f(s)

t− s
(t+

1
Γ(α)

)1−α − βT∆
α (f)(t)| ⩽ ε.

Hence, we obtain βT∆
α (f)(t) = lims→t

f(t)−f(s)
t−s (t + 1

Γ(α))
1−α. Also, if the limit

lims→t
f(t)−f(s)

t−s (t+ 1
Γ(α))

1−α exists and is equal to L, then given any ε > 0, there is
a neighborhood U of t such that

|
f(t) − f(s)

t− s
(t+

1
Γ(α)

)1−α − L| ⩽ ε
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for each s ∈ U. Since σ(t) = t, we get

|[f(σ(t)) − f(s)](t+
1

Γ(α)
)1−α − L(σ(t) − s)| ⩽ ε|σ(t) − s|, ∀s ∈ U

and therefore we obtain βT∆
α (f)(t) = L = lims→t

f(t)−f(s)
t−s (t+ 1

Γ(α))
1−α.

(iv) If σ(t) = t, then µ(t) = 0 and we get

f(σ(t)) = f(t) = f(t) + µ(t) βT∆
α (f)(t)(t+

1
Γ(α)

)α−1.

If σ(t) > t, then we obtain

f(σ(t)) = f(t) + µ(t)
f(σ(t)) − f(t)

µ(t)
(t+

1
Γ(α)

)1−α(t+
1

Γ(α)
)α−1

= f(t) + µ(t) βT∆
α (f)(t)(t+

1
Γ(α)

)α−1

from (ii).

Example 2.3. If f : T → R, f(t) = c for any constant c, then we have βT∆
α (f)(t) = 0.

Example 2.4. If f : T → R, f(t) = t then we get βT∆
α (f)(t) = (t+ 1

Γ(α))
1−α.

Example 2.5. If h > 0 and f : hZ → R, then we obtain βT∆
α (f)(t) =

f(t+h)−f(t)
h (t +

1
Γ(α))

1−α from Theorem 2.2 (ii).

Theorem 2.6. Suppose that the functions f,g : T → R have β−∆− fractional derivatives
of order α at t ∈ Tk. Then, we have the following properties.

(i) The sum f+ g : T → R has β−∆− fractional derivative of order α at t with βT∆
α (f+

g)(t) = βT∆
α (f)(t) + βT∆

α (g)(t).
(ii) The function cf : T → R has β − ∆− fractional derivative of order α at t with

βT∆
α (cf)(t) = c βT∆

α (f)(t), where c is any constant.
(iii) The product f.g : T → R has β−∆− fractional derivative of order α at t with

βT∆
α (f.g)(t) = βT∆

α (f)(t)g(t)+ f(σ(t)) βT∆
α (g)(t) = βT∆

α (g)(t)f(t)+g(σ(t)) βT∆
α (f)(t).

(iv) When f(t)f(σ(t)) ̸= 0, the function 1
f has β−∆− fractional derivative of order α at t

with
βT∆

α (
1
f
)(t) = −

βT∆
α (f)(t)

f(t)f(σ(t))
.

(v) When g(t)g(σ(t)) ̸= 0, the function f
g has β−∆− fractional derivative of order α at t

with
βT∆

α (
f

g
)(t) =

βT∆
α (f)(t)g(t) − f(t) βT∆

α (g)(t)

g(t)g(σ(t))
.
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Proof. (i) Let ε > 0. Since f and g have β − ∆− fractional derivative of order α at
t ∈ Tk, there are neighborhoods U1 and U2 of t such that

|[f(σ(t)) − f(s)](t+
1

Γ(α)
)1−α − βT∆

α (f)(t)(σ(t) − s)| ⩽
ε

2
|σ(t) − s|, ∀s ∈ U1,

and

|[g(σ(t)) − g(s)](t+
1

Γ(α)
)1−α − βT∆

α (g)(t)(σ(t) − s)| ⩽
ε

2
|σ(t) − s|, ∀s ∈ U2.

If U = U1 ∩U2, then we obtain

|[(f+ g)(σ(t)) − (f+ g)(s)](t+
1

Γ(α)
)1−α − [ βT∆

α (f)(t) + βT∆
α (g)(t)](σ(t) − s)|

⩽ |[f(σ(t)) − f(s)](t+
1

Γ(α)
)1−α − βT∆

α (f)(t)(σ(t) − s)|

+|[g(σ(t)) − g(s)](t+
1

Γ(α)
)1−α − βT∆

α (g)(t)(σ(t) − s)|

⩽ ε|σ(t) − s|

for each s ∈ U. Hence, f+ g has β−∆− fractional derivative of order α at t with
βT∆

α (f+ g)(t) = βT∆
α (f)(t) + βT∆

α (g)(t).
(ii) Because f has β−∆− fractional derivative of order α at t ∈ Tk, for any ε > 0 there

is a neighborhood U of t such that

|[f(σ(t)) − f(s)](t+
1

Γ(α)
)1−α − βT∆

α (f)(t)(σ(t) − s)| ⩽
ε

|c|
|σ(t) − s| ∀s ∈ U.

Then we get

|[(cf)(σ(t)) − (cf)(s)](t+
1

Γ(α)
)1−α − c βT∆

α (f)(t)(σ(t) − s)| ⩽ ε|σ(t) − s| ∀s ∈ U.

Thus, cf has β−∆− fractional derivative of order α at t with βT∆
α (cf)(t) = c βT∆

α (f)(t).
(iii) When t is right-dense, we have

βT∆
α (f.g)(t) = lim

s→t

(f.g)(t) − (f.g)(s)
t− s

(t+
1

Γ(α)
)1−α

= lim
s→t

[
f(t) − f(s)

t− s
(t+

1
Γ(α)

)1−α]g(t) + lim
s→t

[f(s)
g(t) − g(s)

t− s
(t+

1
Γ(α)

)1−α]

= βT∆
α (f)(t).g(t) + f(t) βT∆

α (g)(t)

= βT∆
α (f)(t).g(t) + f(σ(t)) βT∆

α (g)(t).

When t is right-scattered, we obtain

βT∆
α (f.g)(t) =

(f.g)(σ(t)) − (f.g)(t)
µ(t)

(t+
1

Γ(α)
)1−α

=
f(σ(t)) − f(t)

µ(t)
(t+

1
Γ(α)

)1−αg(t) + f(σ(t))
g(σ(t)) − g(t)

µ(t)
(t+

1
Γ(α)

)1−α

= βT∆
α (f)(t)g(t) + f(σ(t)) βT∆

α (g)(t).
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The other product rule follows by interchanging the functions f and g from this last
equation.

(iv) Since 0 = βT∆
α (f. 1

f)(t) =
βT∆

α (f)(t) 1
f(t) + f(σ(t)) βT∆

α ( 1
f)(t), we have βT∆

α ( 1
f)(t) =

−
βT∆

α (f)(t)
f(t)f(σ(t)) .

(v)

βT∆
α (

f

g
)(t) = βT∆

α (f.
1
g
)(t)

= βT∆
α (

1
g
)(t)f(t) +

1
g(σ(t))

βT∆
α (f)(t)

= −
βT∆

α (g)(t)f(t)

g(t)g(σ(t))
+

βT∆
α (f)(t)

g(σ(t))

=
βT∆

α (f)(t)g(t) − f(t) βT∆
α (g)(t)

g(t)g(σ(t))
.

Theorem 2.7. Let m ∈ N, α ∈ (0, 1] and c be a constant.

(i) βT∆
α ((t− c)m) = (t+ 1

Γ(α))
1−α

m−1∑
i=0

(σ(t) − c)i(t− c)m−1−i.

(ii) If (t−c)(σ(t)−c) ̸= 0, then we have βT∆
α ( 1

(t−c)m ) = −(t+ 1
Γ(α))

1−α
m−1∑
i=0

1
(σ(t)−c)m−i(t−c)i+1 .

Proof. (i) If m = 1, then βT∆
α (t− c) = (t+ 1

Γ(α))
1−α. Now, we suppose

βT∆
α ((t− c)k) = (t+

1
Γ(α)

)1−α
k−1∑
i=0

(σ(t) − c)i(t− c)k−1−i.

Since
βT∆

α ((t− c)k+1) = βT∆
α ((t− c).(t− c)k)

= βT∆
α ((t− c)k).(t− c) + (σ(t) − c)k βT∆

α (t− c)

= (t+
1

Γ(α)
)1−α

k−1∑
i=0

(σ(t) − c)i(t− c)k−1−i(t− c)

+(σ(t) − c)k(t+
1

Γ(α)
)1−α

= (t+
1

Γ(α)
)1−α

k∑
i=0

(σ(t) − c)i(t− c)k−i,

this concludes the proof of (i) by mathematical induction.
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(ii)

βT∆
α (

1
(t− c)m

) = −
βT∆

α ((t− c)m)

(t− c)m(σ(t) − c)m

= −

(t+ 1
Γ(α))

1−α
m−1∑
i=0

(σ(t) − c)i(t− c)m−1−i

(t− c)m(σ(t) − c)m

= −(t+
1

Γ(α)
)1−α

m−1∑
i=0

1
(σ(t) − c)m−i(t− c)i+1 .

Theorem 2.8. (Chain Rule) Let g : R → R be continuous and α ∈ (0, 1]. If g : T → R has
β− ∆− fractional derivative of order α at t ∈ Tk (t > 0) and f : R → R is continuously
differentiable, then there exists c in the real interval [t,σ(t)] such that

βT∆
α (fog)(t) = f ′(g(c)) βT∆

α (g)(t). (2.1)

Proof. If t ∈ Tk is right-dense, then we have

βT∆
α (fog)(t) = lim

s→t

f(g(t)) − f(g(s))

g(t) − g(s)

g(t) − g(s)

t− s
(t+

1
Γ(α)

)1−α.

There exists ξs between g(s) and g(t) such that

βT∆
α (fog)(t) = lim

s→t
f ′(ξs)

g(t) − g(s)

t− s
(t+

1
Γ(α)

)1−α

by using the mean value theorem. We get lims→t ξs = g(t) from the continuity of g. Thus,
we obtain βT∆

α (fog)(t) = f ′(g(t)) βT∆
α (g)(t).

Let t be right-scattered. Then, we have

βT∆
α (fog)(t) =

f(g(σ(t))) − f(g(t))

µ(t)
(t+

1
Γ(α)

)1−α.

First, we assume g(σ(t)) = g(t). Since we have βT∆
α (fog)(t) = 0 and βT∆

α (g)(t) = 0,
(2.1) is satisfied for all c in the real interval [t,σ(t)]. Now, we will suppose g(σ(t)) ̸= g(t).
In this case, by using the mean value theorem

βT∆
α (fog)(t) =

f(g(σ(t))) − f(g(t))

g(σ(t)) − g(t)

g(σ(t)) − g(t)

µ(t)
(t+

1
Γ(α)

)1−α

= f ′(ξ) βT∆
α (g)(t),

where ξ ∈ [g(t),g(σ(t))]. There exists c ∈ [t,σ(t)] such that g(c) = ξ by the continuity of
g. This concludes the proof.

Definition 2.9. Suppose that α ∈ (n,n+ 1], n ∈ N, T is a time scale and f is n times
delta differentiable at t ∈ Tkn

(t > 0). β− ∆− fractional derivative of order α of f is
defined by βT∆

α (f)(t) = βT∆
α−n(f

∆n
)(t).
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Theorem 2.10. If α ∈ (n,n+1] for all n ∈ N, we get βT∆
α (f)(t) = (t+ 1

Γ(α))
1+n−αf∆

1+n
(t).

Proof. If α ∈ (n,n+ 1], then α−n ∈ (0, 1] and we obtain

βT∆
α (f)(t) = βT∆

α−n(f
∆n

)(t) = (t+
1

Γ(α)
)1−(α−n)(f∆

n

)∆(t)

= (t+
1

Γ(α)
)1+n−αf∆

1+n

(t)

by using Definition 2.9 and Theorem 2.2 (ii) and (iii).

3. β−∆− Fractional Integral

Definition 3.1. If the function f : T → R is regulated and α ∈ (0, 1], the β−∆− fractional
integral of f of order α is defined by

∫
f(t)∆αt :=

∫
f(t)(t+ 1

Γ(α))
α−1∆t.

Note that if α = 1, then Definition 3.1 reduces to the indefinite ∆− integral and if
T = R, then Definition 3.1 reduces to the β− fractional integral.

Definition 3.2. If α ∈ (0, 1] and the function f : T → R is regulated, the indefinite β−∆−
fractional integral of f of order α is defined by∫

f(t)∆αt = Fα(t) + c,

where c is any constant and βT∆
α (Fα)(t) = f(t) for each t ∈ Tk. The Cauchy β − ∆−

fractional integral is defined by∫b
a

f(t)∆αt = Fα(b) − Fα(a)

for all a,b ∈ T.

Theorem 3.3. For α ∈ (0, 1] and any rd-continuous function f : T → R, there exists a
function Fα : T → R such that βT∆

α (Fα)(t) = f(t) for every t ∈ Tk. The function Fα is
called to be an β−∆− antiderivative of f.

Proof. Let α ∈ (0, 1). Since f is rd-continuous, f is regulated and therefore we get
∫
f(t)(t+

1
Γ(α))

α−1∆t = Fα(t) + c. Then, for all t ∈ Tk we obtain

βT∆
α (Fα(t) + c) = (t+

1
Γ(α)

)1−α(Fα(t) + c)∆ = f(t)

from Theorem 2.10. The case α = 1 is proved in [2].

Theorem 3.4. Let a,b, c ∈ T, α ∈ (0, 1], f,g ∈ Crd and λ,µ ∈ R. We have the following
properties.

(i)
∫b
a[λf(t) + µg(t)]∆αt = λ

∫b
a f(t)∆αt+ µ

∫b
a g(t)∆αt.

(ii)
∫b
a f(t)∆αt = −

∫a
b f(t)∆αt.
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(iii)
∫b
a f(t)∆αt =

∫c
a f(t)∆αt+

∫b
c f(t)∆αt.

(iv)
∫a
a f(t)∆αt = 0.

(v) If |f(t)| ⩽ g(t) for all t ∈ [a,b), then |
∫b
a f(t)∆αt| ⩽

∫b
a |g(t)|∆αt.

(vi) If f(t) ⩾ 0 for all t ∈ [a,b), then
∫b
a f(t)∆αt ⩾ 0.

Proof. The relations follow from the analogous properties of the ∆− integral, Definition
3.1 and Definition 3.2.

Theorem 3.5. If t ∈ Tk, f ∈ Crd and α ∈ (0, 1], then we get∫σ(t)
t

f(s)∆αs = µ(t)f(t)(t+
1

Γ(α)
)α−1.

Proof. From Definition 3.2 and Theorem 3.3, there is an antiderivative Fα of f and by
Theorem 2.2 (iv) we obtain∫σ(t)

t

f(s)∆αs = Fα(σ(t)) − Fα(t) = µ(t)(t+
1

Γ(α)
)α−1 βT∆

α (Fα)(t)

= µ(t)f(t)(t+
1

Γ(α)
)α−1.

Theorem 3.6. If βT∆
α (f)(t) ⩾ 0 for every t ∈ [a,b], the function f is nondecreasing on [a,b].

Proof. If βT∆
α (f)(t) ⩾ 0 for all t ∈ [a,b], then from Theorem 3.4 (vii) we have

∫d
c

βT∆
α (f)(t)∆αt ⩾

0 for c,d ∈ T such that a ⩽ c ⩽ d ⩽ b. Then we obtain

f(d) = f(c) +

∫d
c

βT∆
α (f)(t)∆αt ⩾ f(c)

by Definition 3.2. This concludes the proof.

4. β−∇− Fractional Derivative and Integral

Definition 4.1. Assume that α ∈ (0, 1], T is a time scale and f : T → R is a function. For
all ε > 0, if there is a neighborhood U of t ∈ Tk (t > 0) such that

|[f(ρ(t)) − f(s)](t+
1

Γ(α)
)1−α − βT∇

α (f)(t)(ρ(t) − s)| ⩽ ε|ρ(t) − s|, ∀s ∈ U,

the β−∇− fractional derivative of f of order α at t is defined by the number βT∇
α (f)(t).

β−∇− fractional derivative of f of order α at 0 is defined by βT∇
α (f)(0) = limt→0+

βT∇
α (f)(t).

Note that when α = 1, we have βT∇
α (f)(t) = f∇(t) and if T = R, then βT∇

α (f)(t) =
Dα

t (f)(t) is the β− fractional derivative of f of order α.

Theorem 4.2. Suppose that α ∈ (0, 1], T is a time scale, t ∈ Tk (t > 0) and f : T → R is a
function. Then, we have the following properties.
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(i) If f has β−∇− fractional derivative of order α at t, then f is continuous at t.
(ii) Let f be continuous at t and t be right-scattered. Then, f has β−∇− fractional deriva-

tive of order α at t and we have βT∇
α (f)(t) =

f(t)−f(ρ(t))
ν(t) (t+ 1

Γ(α))
1−α.

(iii) When t is right-dense, f has β−∇− fractional derivative of order α at t iff the limit
lims→t

f(t)−f(s)
t−s (t+ 1

Γ(α))
1−α exists as a finite number. Then, we have

βT∇
α (f)(t) = lim

s→t

f(t) − f(s)

t− s
(t+

1
Γ(α)

)1−α.

(iv) If f has β−∇− fractional derivative of order α at t, then we get

f(ρ(t)) = f(t) − ν(t)(t+
1

Γ(α)
)α−1 βT∇

α (f)(t).

Proof. The proof is similar to the proof of Theorem 2.2.

Theorem 4.3. Suppose that the functions f,g : T → R have β−∇− fractional derivatives
of order α at t ∈ Tk. Then, we have the following properties.

(i) The sum f+ g : T → R has β−∇− fractional derivative of order α at t with βT∇
α (f+

g)(t) = βT∇
α (f)(t) + βT∇

α (g)(t).
(ii) The function cf : T → R has β − ∇− fractional derivative of order α at t with

βT∇
α (cf)(t) = c βT∇

α (f)(t), where c is any constant.
(iii) The product f.g : T → R has β−∇− fractional derivative of order α at t with

βT∇
α (f.g)(t) = βT∇

α (f)(t)g(t)+ f(ρ(t)) βT∇
α (g)(t) = βT∇

α (g)(t)f(t)+g(ρ(t)) βT∇
α (f)(t).

(iv) When f(t)f(ρ(t)) ̸= 0, the function 1
f has β−∇− fractional derivative of order α at t

with
βT∇

α (
1
f
)(t) = −

βT∇
α (f)(t)

f(t)f(ρ(t))
.

(v) When g(t)g(ρ(t)) ̸= 0, the function f
g has β−∇− fractional derivative of order α at t

with
βT∇

α (
f

g
)(t) =

βT∇
α (f)(t)g(t) − f(t) βT∇

α (g)(t)

g(t)g(ρ(t))
.

Proof. The proof is similar to the proof of Theorem 2.6.

Definition 4.4. Suppose that α ∈ (n,n+ 1], n ∈ N, T is a time scale and f is n times
delta differentiable at t ∈ Tkn (t > 0). β−∇− fractional derivative of order α of f is
defined by βT∇

α (f)(t) = βT∇
α−n(f

∇n
)(t).

Theorem 4.5. If α ∈ (n,n+ 1], n ∈ N, we get βT∇
α (f)(t) = (t+ 1

Γ(α))
1+n−αf∇

1+n
(t).

Proof. The proof is similar to the proof of Theorem 2.10.

Definition 4.6. If the function f : T → R is regulated and α ∈ (0, 1], the β−∇− fractional
integral of f of order α is defined by

∫
f(t)∇αt :=

∫
f(t)(t+ 1

Γ(α))
α−1∇t.
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Note that if α = 1, then Definition 4.6 reduces to the indefinite ∇− integral and if
T = R, then Definition 4.6 reduces to the β− fractional integral.

Definition 4.7. If α ∈ (0, 1] and the function f : T → R is regulated, the indefinite β−∇−
fractional integral of f of order α is defined by∫

f(t)∇αt = Fα(t) + c,

where c is any constant and βT∇
α (Fα)(t) = f(t) for each t ∈ Tk. The Cauchy β −∇−

fractional integral is defined by∫b
a

f(t)∇αt = Fα(b) − Fα(a)

for all a,b ∈ T.

Theorem 4.8. For α ∈ (0, 1] and any ld-continuous function f : T → R, there exists a
function Fα : T → R such that βT∇

α (Fα)(t) = f(t) for every t ∈ Tk. The function Fα is
called to be an β−∇− antiderivative of f.

Proof. The proof is similar to the proof of Theorem 3.3.

Theorem 4.9. Let a,b, c ∈ T, α ∈ (0, 1], f,g ∈ Cld and λ,µ ∈ R. We have the following
properties.

(i)
∫b
a[λf(t) + µg(t)]∇αt = λ

∫b
a f(t)∇αt+ µ

∫b
a g(t)∇αt.

(ii)
∫b
a f(t)∇αt = −

∫a
b f(t)∇αt.

(iii)
∫b
a f(t)∇αt =

∫c
a f(t)∇αt+

∫b
c f(t)∇αt.

(iv)
∫a
a f(t)∇αt = 0.

(v) If |f(t)| ⩽ g(t) for all t ∈ [a,b), then |
∫b
a f(t)∇αt| ⩽

∫b
a |g(t)|∇αt.

(vi) If f(t) ⩾ 0 for all t ∈ [a,b), then
∫b
a f(t)∇αt ⩾ 0.

Proof. The relations follow from the analogous properties of the ∇− integral, Definition
3.1 and Definition 3.2.

Theorem 4.10. If t ∈ Tk, f ∈ Cld and α ∈ (0, 1], then we get∫t
ρ(t)

f(s)∇αs = ν(t)f(t)(t+
1

Γ(α)
)α−1.

Proof. The proof is similar to the proof of Theorem 3.5.
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5. Conclusions

First, we defined β−∆− fractional derivative of order α. If α = 1, then Hilger deriva-
tive was obtained and if T = R, then β− fractional derivative of order α was obtained.
Some properties of β−∆− fractional derivative of order α were given. Second, β−∆−
fractional integral of order α was defined. This definition reduces to the indefinite ∆−
integral when α = 1 and this definition reduces to the β− fractional integral when T = R.
Then, we obtained some properties of β−∆− fractional integral of order α. Finally, we
defined β −∇− fractional derivative and integral of order α and their properties were
introduced. Our new calculus unifies and generalizes the time scale calculus and the β−
fractional calculus.
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