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Abstract

In this study, we consider a novel approach called the Haar wavelet collocation method (HWCM) to
examine the mathematical model of pest propagation in tea plants and how biological enemies might control
them. This model is in the form of a system of coupled ordinary differential equations (ODEs). When studying
the system, we consider tea plants, pests that harm the plants, biological enemies that are their reasonable
competitors of pests, self-reproduction of the tea plants, natural death of pests and natural enemies, etc. By
turning the Mathematical model into a system of non-linear algebraic equations, we use the properties of
the Haar wavelets. The opted method can solve the biological pest management problem in tea plants. The
values of the unknown coefficients are recovered using the collocation method and Newton Raphson method.
The Mathematica program acquires the numerical results, nature, and uniformity. The acquired findings show
that the current method is more accurate than those indicated in tables and graphs.

Keywords: Haar wavelet method, Collocation method, Non-linear Ordinary differential equations.
2010 MSC: 65T60, 97M60, 35A24.

1. Introduction

Tea is regarded as a beverage and a gift from nature to humans for starting a new
day, making it the second most popular beverage in the world after water. Asia is home
to most tea-producing nations, with China, India, and Sri Lanka being the three biggest
producers [1]. Black, yellow, green, and white tea originates from the same Camellia
sinensis plant. India produces 52% of the world’s tea, with the State of Assam being the
primary producer. Under various agroecological conditions, tea is grown in the tropics
and subtropics in different porous, well-drained, acidic soil types (PH 3.3 to 6.0). It is
subjected to various climatic conditions, including temperatures between 12°C and 40°C,
annual rainfall between 938 and 6000 mm, and relative humidity ranging from 30 percent
to 90 percent. Tea trees can reach a height of 15 m in the wild [2, 3]. Since tea plants
can live for anywhere between 30 and 50 years, [2] fighting off diseases and pests is
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one of the important jobs for tea growers(Figure 1). Pests will quickly impact the tea
plants because this is the time of year when tea growers can harvest their produce from
mid-March to mid-November.

Therefore, pests become unavoidable visitors in every cropping system and lower plant
growth, harm various plant sections, and lower crop quality and productivity. The insects
use their mouth styles to suck sap from buds, terminal twigs, and leaves while injecting
them with their deadly saliva [4]. As a result, the once-fresh and healthy leaves slowly
distort and curl up. An unfavorable environment causes the plant to die from the tips
of its leaves or roots backward. Every female insect looks for soft plant tissues to lay
500-600 eggs. The eggs hatch after a week, and the nymphs are released. It takes approx-
imately a month for a life cycle to complete. Pests can also come in different generations.
After monsoon rainfall, damp and shaded regions experience the greatest pest impact.
Agrotechnology is used to boost productivity while simultaneously increasing the number
of losses as tea plant yield rises. One insect can cause numerous crop loss estimates. Its
production affects various nations’ national economies in different ways. Insect and mite
pests (arthropods) are often responsible for 5% to 55% of the damage [5, 6, 7, 8]. Pests
can be controlled using a variety of techniques. They mainly consist of applied control
methods and natural control variables. Climate variables, topography features, predators
and parasites, and other things are examples of natural controls. The following applied
control methods are also used: physical control, cultural control, microbial control, bio-
logical control, mechanical control, regulatory control, chaemosterilant, breeding resistant
agrotypes, chemical control, ionizing radiation, and so on [9].

Nature uses a variety of strategies to defend plants from pest species, with biological
control being one of the most effective and environmentally friendly [8, 10]. In contrast to
chemical pesticides, natural enemies are used in biological control approaches to suppress
pest species (see Figure 2). The use of natural enemies to control pests is referred to as
"biological control" in this context. The only strategy that is both ecologically friendly
and increases species diversity while preserving biodiversity is biological control within an
agroecosystem. By attacking the insects, viruses, bacteria, and fungi that harm the plants,
a natural enemy maintains the ecosystem’s equilibrium and reduces the population of
pests [10]. Predators, diseases, or parasitoids are just a few examples of the natural
enemies of pests. When compared to chemical control, biological control approaches have
several advantages. They are:

1. Natural enemies help to reduce pest populations permanently;

2. The likelihood of bug resistance growth diminishes when biological control tech-
niques are used. All types of pests, including potentially hazardous and beneficial
species, are eliminated by pesticides. Using natural enemies to control pests is a
successful and efficient method since they exclusively attack and kill their intended
targets, making them ideal for eradicating certain pests.

The successful and practical result of in-depth research has been the widespread and
extended application of biological control. It entails examining and identifying regional
natural enemies (such as diseases, parasitoids, and predators) in tea ecosystems, raising
awareness of their ecological and biological importance, and creating methods for breed-
ing and releasing natural enemies in tea plantations. Ordinary differential equations have
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Figure 1: Biological enemies for the Tea plant.

contributed significantly to the history of ecology and will continue to do so in the years
to come. Many scholars have used three-species food chain models to comprehend the dy-
namics of multispecies interaction in the ecology [12, 13, 14]. [14] presents the stability
dynamics of a three-species model with a complicated character. You may see some of the
research using three-species models to represent the dynamics of pests in [7, 10]. In this
article, we considered the model proposed in [11], which describes three communities:
the tea plants (x), the pests that harm them (y), such as whiteflies and small moth larvae,
etc., and their biological adversaries (such as predatory chrysopids, carabids, and Agelena
labyrinthica), which are also their justifiable competitors (z). It is believed that timely
harvesting of tea plants can stop insect damage.

dx _ _ 2 _ d1xy —

dt — T1Xx c1x qo+x+soy h.X,

dy _ _ Soxy _ _ b3yz (1.1)
dt = qotxtsoy  qitytsiz MY .

dz _ ayz
dt = qitytsiz 2%

with assumed initial conditions,
x(0) = x0,Y(0) = yo, z(0) = zo.

where, 11, ¢1, h, 81,02,03, 04, 111, L2, o, q1, So, $1 are all non-negative parameters. Here, 11
represents the rate at which tea plants reproduce on their own, c¢; represents the level of
competition among tea plants for resources like food and space, |1 represents the natural
mortality rate of the pest population in the absence of tea plants, and p, represents the
natural mortality rate of natural enemies in the absence of pests. The parameters &; and
d3 show, respectively, the per capita rate of pest predation on tea plants and that of natural
enemies on pests, whereas 6, and 6, show, respectively, the effectiveness of biomass con-
version from tea plants to pests and from pests to natural enemies. The parameters qy and
q1 represent the environmental protection offered to tea plants and pests, respectively, sg
represents the level of pest-pest interaction, s; represents the level of natural enemy inter-
action, and h represents the harvesting effort. The rate of self-reproduction of tea plants
is thought to be higher than the pace of harvesting.

Wavelet theory is a recent promising area in mathematical research. It has been used in
various domains, including signal analysis for representing and segmenting waveforms,
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time-frequency analysis, biological field, and quick methods for straightforward imple-
mentation. In the middle of the 1980s, wavelet theory emerged, having a major impact
on both pure and practical mathematics. Due to their properties, such as orthogonal-
ity, compact support, and ability to provide a precise representation of a variety of func-
tions and operators at different levels of resolution, wavelet methods have attracted a
lot of attention in the last three decades for the numerical solution of differential equa-
tions [15, 16]. There are different wavelet methods, for instance, the Haar wavelet
method on ODEs [17, 18], Haar wavelets matrix through linear algebra [19], Haar wavelet
collocation technique for fractal-fractional order problem [31], Haar wavelet method
for the study of two-phase nanofluid MHD boundary layer flow [20], Laplace transform
method for Thermo-diffusion effect on magnetohydrodynamics flow of fractional Casson
fluid [29], Enhancement of heat and mass transfer of a physical model using Laplace
transform method [30], Haar wavelet method for Fractional Fredholm Integro-differential
equations [21], Haar wavelet method for Third order Integro Differential Equations [33],
Numerical solution of higher order nonlinear integro differential equations involving vari-
able coefficients using Haar wavelets [34], Solution of Mittag-Leffler type Fractional Fred-
holm Integro-differential equations using Haar wavelet techniques [32], Numerical solu-
tion for the HIV infection of CD4+ Tcells model using Modified Bernoulli wavelets [22],
Solution of a system of differential equations using Laguerre wavelets [23], Taylor wavelet
approach for the linear and nonlinear singular value problems [24], Hermite wavelet
technique to solve mathematical models on the digestive system and COVID-19 pan-
demic [25]. In this article, the Haar wavelet method was developed to resolve differential
equations, demonstrating its effectiveness and strength. The obtained results are com-
pared with the ND Solver solution. The proposed approach provides the easiest and most
effective way of solving the proposed model. In the literature survey, no one considered
this model by HWCM; this motivates us to study this model by the present method.

The arrangements for the rest of the paper are the fundamentals of the Haar wavelet con-
cept and attributes described in section 2, which outlines the structure for the remaining
study. In section 3, certain theorems on the Haar wavelet are presented. Section 4 offers
the procedure for solving differential equations. Numerical results are shown in 5. Finally,
conclusions are drawn in section 6.

2. Preliminaries of the Haar Wavelets

Consider an interval [a, b] C R which is divided into 2M subintervals of equal length;
the length of each subinterval is Ax = (b — a)/2M. Now two parameters are introduced:
j=0,1,2,..,Jand k =0,1,2,..,m — 1, where m = 2J. The wavelet number i is identified
as i = m+ k+ 1. where j is called the dilation parameter, and k is called the translation
parameter. Then the i*" Haar wavelet is, then described as

1 for xel[G(i), (1),
hi(x) = -1 for x e [{(i), (1)), (2.1
0 otherwise
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where,
G1(1) = a+ 2kAAx, (2.2)
GA) = a+ (2k + 1)AAX, (2.3)
) = a+2(k + 1)AAX, (2.4)
A= M 2.5)
m

(2.1) is valid for i > 2. For i=1 we have,

(2.6)

1 for x¢€la,b),
0 otherwise.

(2.6) called the Haar scalar function. The operational matrix of integration are given by,

ppilx) = JX Jx r Jx hi(x)dxP, (2.7)

where,1=1,2,...,2M, p =1,2,...,n, and for i=1, we have
1

pp1(x) = E(X_ a)f, (2.8)
for i > 2, we have
0 for x < (1(1)
) = %[X — G (1)]8 for  x e [Gi(i), G(1)],
Ppi Al — Q@] —2[x — G(1)]#) for  x€[G(i), )],
pribx — G (@]1P — X—QM]+R—QUB}mr x> G(0).

(2.9)
For the particular value of J=2 the first order operational matrix of integration is repre-
sented as

[0.0625 0.1875 0.3125 0.4375 05625 0.6875 0.8125 0.9375]
00625 0.1875 03125 04375 04375 03125 0.1875 0.0625
00625 0.1875 0.1875 0.0625 0 0 0 0
0 0 0 0 00625 01875 0.1875 0.0625
P10 = 100625 00625 0 0 0 0 0 0
0 0 00625 00625 0 0 0 0
0 0 0 0 00625 00625 0 0
0 0 0 0 0 0 00625 0.0625]

3. Some results on the Haar wavelets

For every pair of i,j € Z, the Haar function 1 ; is defined on R as, 1 ;(x) = 2%1|)(2i j) Vx € R. This

function is supported on [2%, (j;l ) with the property flblj x)dx = 0 and [Py 1?2 = J"ll) x)dx = 1.

Theorem 3.1. Let {;;(x)[i,j € Z} be set of the Haar system functions on IR. Then L2(R) be the Haar space is
complete.
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Proof. Let{i;;(x)li,j € Z} be the basis of the normed linear space [2(R). Consider {1])11"].} be the Haar cauchy
sequence in L2(R). By the definition of cauchy sequence for a given ¢ = % > 0, 3 a +ve integer ny > :
s — w‘ il < 3, Vi, 1=m

for e = 2, choose 1]) > such that Hll)}j;. fd)]fsz < %, Vki, ko =1

for e = choose 11) 5 such that ||1])1.f§ —11)1‘;”2 < 22,Vk2,k3

22;

for e = % choose wk“ such that IIIbk“ 71]) ““ Hz < 2“ , Vkn, kna1 = 1n

kn n 5
{1])1‘;‘} is subsequence of {wk ). It is clear that Z i — 1l T < Zl 7=
n=
Consider, dpn = [y, [+ My, — by, I+, - - +|1|)kn+1 ll)kn , forn=1,23,-
= {d)n} is an increasing sequence of non-negative measurable functions, such that

lpn 5=, ll2 + Z Wi, 1y — Wi, 12127, (by Minkowski inequality)
lpnlls < (I, ll2 + 1)

Therefore ¢, is bounded and increasing sequence, then 3 ¢ such that li_r>n ¢n = ¢, by monotone conver-
n—oo

gence theorem, we have [ ¢p?dx = Jim JdAdx < oo = ¢ € Lp(R).
o0
o0
= The series Py, (x) + 3 by, ., (x) =y, (x)| converges almost eveywhere.
1

so that {{»y } converges to P (x), Vx € A, where A is measurable set. Further, let € > 0 be given choose 1 so
large such that ”‘l)]f,j - 1])%’].”2 <e, vk, 1>1L1
— Wl bl <e  Vikln>L
j|1pk - 1" |2dx] < €2 (by Fatou’s Lemma),
jhp b |2dx = j lim_ i =Wl Pdx < €% < oo,

Thus, b — P} eLp( )andll) =¥+ € Lp(R) and lim [[p — ¥l =0
. n—o00 ’

Thus 1 is limit in L, (R) of sequence {wf.fj }. Hence L, (R) is complete. O
Theorem 3.2. Let us assume that f(x) = d?;;,(f] € 12(R) is a continuous function on [0,1] and its first

derivative is bounded Vx € [0,1], n > 2. Then the Haar wavelet method, based on approach proposed in [27, 28],
will be convergent. i.e. |Eng| vanishes as J goes to infinity. The convergence is of order two [26] as following,

2
[Emllz = O] (5) ]
Solution at collocation points: Let u is set of all collocation points which is measurable. {C;} be the

sequence of collocation points and {f;} be the sequence of functional values at {C;} that satisfies the given
system of differential equations. Here f be a function from Z™ to R defined by f(i) = f;. Then

where f(x) is an exact solution of a given system of differential equations.

4. Method of Solution For Tea Model

Consider the system of n-differential equations as follows:
Yy () = 1t y1(x), - yn(x)),

Yo (x) = f2(t,y1(x), ..., yn(x)),
, 4.1

Yn (%) = fr(ty1(x), ., yn(x)),
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with initial conditions yy (0)=oy, k = 1,2, ..., n. In order to find the Haar wavelet solution of these system
of differential equations. We first find the collocation points using collocation method.i.e, given by

x1 = 0.5(x1 + %), 1=1,2,..2M.
Where,
X1 = a+ lAx, 1=0,1,2,...,2M.
Now the Haar wavelet approximation of (4.1) can be written as

, 2M
yrx) =) afhi(x). 4.2)
i=1

Integrating(4.2) with respect to x from O to x, we get

M
Yk(x) =yr(0)+ ) akPyi(x). (4.3)
1=1

Where, Py ; is first operational matrix of integration. Substituting the equations (4.2) and (4.3) in (4.1) and
replacing x by x; the system of differential equations reduces to system of algebraic equations as follows:

F (a%, a%, ey a%M, a%, a%, .y a%M, wpalt,al, ., azy) =0
Fa(aj, a3, . Q3pq, A, G5, oo Qpps s AT Q35 ey A4 ) =0 44

Fn(a%, a%, .y a%M, a%, a%, .y a%M, e @15, a3, e gy ) = 0.
To find the values of Haar coefficients a].f, we considered the Newton-Raphson method as follows: If the initial

guess of the root is a]f and a]f "1 is the point at which the slope intercepts, then the Taylor series expansion of
(4.4) can be written as

oF OF 4 OF 4
Fl,i+1 :F1’1+(a51+17a]1<,1) P ‘;1 +(a§l+17a§l) P £+,...,+(a]2<M’i+1fa]2<M,i)a kl y (4.5)
a a2 4om

where, k=1,2,3,...,n. Applying the Taylor expansion similarly for F,, F3,Fy, ..., Fn. And generalizing for n
equations, we get

E)Fk,i " aFk/i k aFk/i k k E)Fk,i k aFk/i " aFk,i
dak a7i+1 Tal; ayit1ts ""+7aa12<M UM = “Fritag; dak tay; dak Tty TAM, 2ok’ (4.6)

the first subscript k represents the equations in (4.4), and the second subscript denotes the function value at
the present value (i) or at the next value (i + 1). (4.6) can be represented in matrix notation as:

la¥, 1] = —[FI+ [Jllak]. 4.7)

where the partial derivatives evaluated at i are written as the Jacobian matrix consisting of partial derivatives:

OFi. R | dFu
daf da¥ daku
0F 0Fy; . 0F
dak dak dak

] = 1 2 2M
OF. ¢ 0F . i . OF, ¢
daf da¥ daiu

The initial and final values are expressed in vector form as:

l;]T — k k ]T _

k K k k k T_ oo .
[a i G M) lafgl = [al,i+1 agigr o Gngafsand [FT=[Fi Fou Frdl -

Multiplying the inverse of the Jacobian to (4.7)

[a¥, )] = [a¥] — [ 1[F. 4.8)

from (4.8) we get the Haar wavelet Co efficients a]fs. Using a'fs in Eqn (4.3) we get the desired solution
of the Tea model(4.1).
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Table 1: Numerical comparison ND Solver solution and AE of HWCM for x(t)

t | ND Solver Absolute Error of HWCM Absolute Error of HWCM Absolute Error of HWCM
solution | (J=6) with ND Solver solution | (J=8) with ND Solver solution | (J=10) with ND Solver solution

0.1 8.961314 1.1173 x 102 6.6365 x 1073 41284 x 10~*
0.2 4.313439 3.5351 x 102 2.1042 x 1073 1.3074 x 104
0.3 2.557495 1.7084 x 102 1.017 x 103 6.3148 x 10~°
0.4 1.630257 9.7483 x 1073 5.8032 x 104 3.5836 x 10~°
0.5 1.072577 6.0138 x 103 3.5816 x 10~% 22175 x 10~°
0.6 0.716553 3.8618 x 103 2.3004 x 10~% 14215 x 10°
0.7 0.482494 2.5346 x 1073 15101 x 10 * 9.3110 x 10~
0.8 | 0326284 1.6841 x 1073 1.0030 x 10~* 6.1148 x 10~°
0.9 | 0221197 11271 x 103 6.7163 x 10 ° 41054 x 10°©
1.0 [ 0.150194 7.5768 x 10~ * 45185 x 10~° 2.7840 x 106

— _

100 [~

: ND Solver :

80 HWCM (J=6) .

60 - -

40 4

20+ -

0y | i I | ]

0.0 0.2 0.4 0.6 0.8 1.0

Time(t)

Figure 2: Graphical representation of HWCM (J=6), ND Solver solution for x(t)

5. Numerical Example and Discussion

The Tea model (1.1) is solved using the present approach called Haar wavelet collocation method (HWCM)
with following initial conditions: x(0) = 100,y(0) = 10, z(0) = 5, and the parameter valuesty = 1,¢; = 1,81 =
1.667,6, = 1.667,83 = 0.05,84 = 0.05, 1 = 0.2443, 1, = 0.01,q9 = 0.334,q; = 0.6,s9 = 0.334,s1 = 0.5,q =
0.25 and the obtained results are discussed in the Tables 1-3, and Figures 2-13. The numerical values of the
HWCM are compared with the NDSolver solution and the Absolute Error is tabulated in Tables 1-3, Table 1
represent the numerical values of tea plants x(t), Table 2 represent the numerical values of pests that harm tea
plants y(t) such as whiteflies, small moth larvae, etc., and Table 3 represent the numerical values of justifiable
biological competitors z(t) for different values of J=6, 8, 10. We can see that error decreases with an increase
in the resolution of HWCM. Graphical comparison of HWCM and NDSolver for x(t)Tea Plants, y(t) the pests
that damage the tea plants, and z(t) also their justifiable biological competitors are shown in Figures 2-4
Figure 5 represents graphical representation of Absolute Error of HWCM(J=6,8,10) with ND Solver solution
of tea plants x(t), Figure 6 represents graphical representation of Absolute Error of HWCM(J=6,8,10) with
ND Solver solution of pests that harm tea plants y(t) such as whiteflies, small moth larvae, etc., Figure 7 rep-
resents graphical representation of Absolute Error of HWCM (J=6,8,10) with ND Solver solution of justifiable
biological competitors z(t).

Effect of Self reproduction rate (r7): Figures 8-10 represent the changes of x(t),y(t), z(t) due to increase
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Table 2: Numerical comparison ND Solver solution and AE of HWCM for y(t)

t ND Solver Absolute Error of HWCM Absolute Error of HWCM Absolute Error of HWCM
solution (J=6) with ND Solver solution | (J=8) with ND Solver solution | (J=10) with ND Solver solution
0.1 ] 11.161210 4.0290 x 1073 2.3477 x 10~ 1.4595 x 10~°
0.2 | 11.992991 8.8063 x 103 5.1731 x 10~% 3.2160 x 10~
0.3 | 12.544911 1.2529 x 1073 7.3829 x 10~* 45885 x 10~
0.4 | 12.866949 1.5254 x 1073 9.0034 x 10~% 55941 x 10~°
0.5 | 13.008189 1.7144 x 1073 1.0128 x 10~* 6.2907 x 10~°
0.6 | 13.012975 1.8374 x 1073 1.0861 x 104 6.7441 x 10~°
0.7 | 12918519 1.9103 x 103 1.1296 x 104 7.0129 x 10~°
0.8 | 12.754298 1.9465 x 103 1.1514 x 104 7.1501 x 10~°
0.9 | 12.542666 1.9567 x 103 1.1576 x 104 7.1851 x 10~°
1.0 | 12.300027 1.9487 x 104 1.1531 x 104 7.1530 x 10—°
[ ]
13.0 r ]
125} .
120} .
S 115- .
> L ]
110} 4
1051 ND Solver 1
[ HWCM (J=6) ]
10.0 .
L ! ! ! ! L
0.0 0.2 0.4 0.6 0.8 1.0
Time(t)
Figure 3: Graphical representation of HWCM (J=6), ND Solver solution for y(t)
Table 3: Numerical comparison ND Solver solution and AE of HWCM for z(t)
t ND Solver Absolute Error of HWCM Absolute Error of HWCM Absolute Error of HWCM
solution (J=6) with ND Solver solution | (J=8) with ND Solver solution | (J=10) with ND Solver solution
0.1 5.014359 2.5601 x 10~7 1.3229 x 108 8.1434 x 1010
02| 5.029136 2.6631 x 10~° 1.5446 x 1077 9.5960 x 107
0.3 5.044185 6.2762 x 10°° 3.6714 x 10~7 2.2817 x 108
0.4 | 5.059411 1.0723 x 107° 6.2930 x 107 3.9094 x 10~8
0.5 5.074743 15774 x 10> 9.2739 x 10~ 5.7623 x 108
0.6 5.090134 2.1285 x 105 1.2527 x 10~ 7.7824 x 108
0.7 | 5.105546 2.7161 x 107° 1.5998 x 10~° 9.9368 x 108
0.8 5.120955 3.3339 x 10—° 1.9648 x 10~° 1.2199 x 10—
0.9 5.136339 39778 x 10~° 2.3453 x 10~° 1.4561 x 10—
1.0 5.151683 4.6447 x 107> 2.7394 x 10~° 1.7008 x 10—
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Figure 4: Graphical representation of HWCM (J=6),ND Solver solution for z(t)
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Figure 5: Graphical representation of Absolute Error of HWCM(J=6,8,10) with ND Solver solution for x(t)
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Figure 6: Graphical representation of Absolute Error of HWCM (J=6,8,10) with ND Solver solution for y(t)
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Figure 8: Graphical representation of variation of r; for x(t).

in the self reproduction rate (r1) of Tea plant. With the increase in the self-reproduction rate(rq ), the tea plants
x(t), pests that damage the tea plants y(t), and reasonable competitor for pests z(t) increases simultaneously.

Effect of Intensity of competition (c1): Effect of the intensity of competition (c;) among tea plants for
food, space, etc., on x(t),y(t), z(t) seen in the Figures 11-13. With the increase in the intensity of competition
(c1), the tea plants x(t), pests that damage the tea plants y(t), and reasonable competitor for pests z(t)
decreases simultaneously.

6. Conclusion

In this article, we have considered a novel method called the Haar wavelet collocation method (HWCM)
to study the nonlinear model of control of biological pests in tea plants. Using the properties of the Haar
wavelet and its operational matrix, the mathematical model has been transformed into a system of nonlinear
algebraic equations. Newton’s Raphson method was used to solve this system. The obtained numerical
solution of tea model (1.1) was tabulated in tables. The absolute error of the HWCM has been tabulated by
comparing the results obtained with the ND Solver solution. The obtained tables and graphs revealed that
the HWCM converges rapidly. The obtained numerical results are represented in Tables 1-3 and Figures 2-4.
As the resolution value (J) increases, the absolute error decreases and tends to zero. Figures 5-7 represent
the graphical representation of the absolute error of HWCM (J=6,8,10) with ND Solver solution of x(t), y(t),
and z(t). Figures 8-13 reveal the effect of self-reproduction rate (r;) and intensity of competition (c;) on tea
plants x(t), pests that damage the tea plants y(t), and reasonable competitor for pests z(t). Hence, the results
show that the HWCM can solve the problem more precisely. This method can be applied to other biological
models of different order with slight changes in the method. Also, the current approach is not restricted to a
system of ODEs. It can be extended to partial differential equations and, more broadly, to fractional ones.
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