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Abstract

The significant motivation behind this research article is to utilize a technique depending upon a certain
variant of the integral transform (Fourier and Laplace) to investigate the basic solution for the Dirichlet
problem with constant boundary conditions. The time-fractional derivative of one-dimensional, the equation
of advection-diffusion, and the Liouville-Caputo fractional derivative in a line fragment are presented. We
also illustrate the results using graphical representations.
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1. Introduction

Fractional calculus (FC) is becoming one of the most popular topics in applied math-
ematics due to its expanding applications in various scientific and technical domains. Be-
cause fractional-order derivatives differ from classical derivatives in that they have non-
local quality, they are an excellent choice for capturing memory and hereditary traits in
various real-world events.

During last decade, Many Mathematicians have studied numerical methods for differ-
ent types of fractional partial differential equations involving time and/or space deriva-
tive such as time-fractional diffusion equations, space-time fractional diffusion equations,
Cauchy reaction diffusion equations, Time Fractional Convection-Diffusion Equations, etc.,
see [2, 3, 10, 11]. Kamran and et al. provided a method for the numerical simulation of
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time-fractional diffusion equations. Also, they proposed scheme combines the local mesh-
less method based on a radial basis function (RBF) with Laplace transform, see [10]
Two- and three-dimensional numerical solutions for the heat transfer problems in absorp-
tive media with a two-condition model are presented, and thermal dispersion tensors are
investigated [12]. In [15], the authoritative equation for flux matter is given below:

j = −a grad q + vq. (1.1)

The diffusivity coefficient is addressed by a and v represents the speed vector. Taking
into account the equation of balance, particularly for mass outcomes in the equation for
normal advection-diffusion (by using the condition v = constant), we get

∂q
∂t

= a△q − v · grad q. (1.2)

As far as dissemination or heat conduction, including an extra velocity field, is concerned,
(1.2) can be deciphered as a transport phenomenon in permeable media, Brownian move-
ment, or groundwater geology [14]. The advection-diffusion equation (1.2) has the fol-
lowing form for a single spatial coordinate x:

∂q
∂t

= a
∂2q
∂x2 − v

∂q
∂x

. (1.3)

The study of fractional-order derivatives, useful in physics, geophysics, geology, vis-
coelasticity, engineering, and biotechnology, has recently attracted greater attention. See
[16, 17, 29] for more information. Here, we recall some fractional derivative definitions
used in our present study. It is tacitly assumed that all of the presented quantities exist in
the mathematical sense. The readers are advised to refer to the associated literature for
the exact conditions of the transformed functions.

2. Preliminaries

Here, we give some definitions and lemmas that will be used in this paper.

Definition 2.1 (see [4, 21]). The fractional derivative of Riemann Liouville type for a
function q(t) of order θ is as follow

Dθ
RL{q(t)} =

dn

dtn

(
1

Γ(n− θ)

∫ t

0
(t − τ)n−θ−1q(τ)dτ

)
, (n− 1 < θ < n), (2.1)

where n denotes a positive integer. Henceforth, we denote by Γ (θ) the familiar (Euler’s)
gamma function of argument θ.

Definition 2.2 (see [21, 23, 24]). The fractional derivative of Liouville-Caputo type for a
function q(t) of order θ is given by

dθq(t)
dtθ

=
1

Γ(n− θ)

∫ t

0
(t − τ)n−θ−1d

θq(τ)
dτθ

dτ, (n− 1 < θ < n), (2.2)

where n denotes a positive integer.
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Definition 2.3 (see [1, 22]). Finite sin Fourier transform of a function u(x), defined on
[0,L], considering spatial co-ordinate x, is given by

F [u(x)] = ū(pn) =

∫L
0

u(x) sin(pnx)dx, (2.3)

with pn = nπ
L and n being a positive integer. Moreover, the inverse finite-sin-Fourier

transform of a function u(x) is as follows:

u(x) =
2
L

∞∑
n=1

ū(pn) sin(pnx). (2.4)

Definition 2.4. [22] The second-order derivative finite-sin-Fourier transform of a function
u(x) defined on [0,L] is computed by using the following formula:

F

[
d2u(x)
dx2

]
= −p2

nū(pn) + pn[u(0) − (−1)nu(L)]. (2.5)

Definition 2.5 (see [6, 8, 23]). In the present-day literature, one of the many obvious
parametric and argument variations of the classical Laplace transform:

L {f (t) : s} :=
∫∞

0
e−st f (t) dt =: FL (s) (2.6)

and it’s s-multiplied version of the Laplace transform (or, in other words; the Laplace-
Carson transform):

LC {f (t) : s} := s
∫∞

0
e−st f (t) dt =: FLC (s) (2.7)

is the alleged "Sumudu transform" which, for a function f(t), is characterized by

S[f(t) : s] := f̂(s) =
∫∞

0
f(st)e−tdt

=
1
s
L

{
f (t) :

1
s

}
= LC

{
f (t) :

1
s

}
.

Lemma 2.6 (see [6, 8]). The above-defined variants of the Laplace transform, and the
Laplace-Carson transform when applied to the fractional derivative of Liouville-Caputo type
for a function f(t) of order θ, yields

S

[
dθf(t)
dtθ

: s
]
= s−θ

[
f̂(s) −

n−1∑
k=0

sk
[
fk(0)

]]
, (n− 1 < θ ≦ n), (2.8)

where n is a positive integer.
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Definition 2.7 (see [25]). Mittag-Leffler function:

Eθ(z) := Eθ,λ(z)
∣∣
λ=1,

where

Eθ,λ(z) =

∞∑
n=0

zn

Γ(θn+ λ)
, (θ > 0; λ ∈ R). (2.9)

In [18], (1.1) was investigated. One may compare this to the works of expanded Fick
or Fourier law, see [5, 17, 19, 20] and several recent developments reported in [9, 26,
27, 28]. The generalized constitutive equation for mass flux defined using long-tail power
kernel is given by the citation [18] and is as follows:

j = D
∞−⊆
RL [−a grad q(t) + vq(t)]. (2.10)

By combining the constitutive equation (2.10), mass balance equation and time-fractional
advection-diffusion equation is created:

∂θq
∂tθ

= a△q − v · grad q (2.11)

along with the order theta of the fractional derivative of Liouville-Caputo. An extensive
survey of works on fractional advection-diffusion equation and the numerical methods
used to solve it is given in the article cited in [13]. There are just a few studies in the
literature that examine the analytical answers of fractional advection-diffusion equation,
see [13]. The Dirichlet problem for (2.11) in a line segment 0 < x < L is examined in this
study. The sought-after function is subject to constant boundary conditions, whereas the
basic solution is subject to the Dirac delta boundary condition.

The following is how the paper has been set up. In Section 1, the definitions of inte-
gral transformations and fractional calculus core concepts are covered . In Section 3, we
solve the advection-diffusion equation in a line segment for the desired function with zero
conditions. We present a discussion concerning our findings in this article in Section 4.

3. Main Results

Here, we look at the equation for advection-diffusion on a line segment. The Dirichlet
problem for the desired function is taken into consideration to find a solution.

A. Basic Solution of the Problem

The equation of time-fractional advection-diffusion in the line segment 0 < x < L is
written as follows

∂θq
∂tθ

= a
∂2q
∂x2 − v

∂q
∂x

, (0 ≦ θ ≦ 1). (3.1)

The equation (3.1) is considered under zero initial conditions, as it is generally done, for
any c > 0, v > 0, 0 < t < ∞, for

t = 0 : q(x, t) = 0 (3.2)
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and at the end of the segment with the following Dirichlet boundary conditions:

x = 0 : q(x, t) = m0δ(t) (3.3)

and
x = L : q(x, t) = 0, (3.4)

where the Dirac delta function is represented by δ(t). To obtain the non-dimensional
quantity, the constant multiplier m0 is introduced. It is worth seeing that the new sought-
for function is given by

q(x, t) = u(x, t) exp
(v x

2a

)
(3.5)

minimizes the initial-boundary value problem under consideration to the subsequent equa-
tion:

∂θu
∂tθ

= a
∂2u
∂x2 −

v2

4a
u, (3.6)

where
u(x, 0) = 0, (3.7)

u(0, t) = m0δ(t), (3.8)

and
u(L, t) = 0. (3.9)

By using (3.8), (3.9) and (2.5), we can solve the equation (3.6) by means of finite
Sin-Fourier transform (3.6), so that

∂θū(pn, t)
∂tθ

=

(
−ap2

n −
v2

4a

)
ū(pn, t) + apnm0δ(t) (3.10)

with
t = 0 : ū(pn, t) = 0. (3.11)

Under the initial condition (3.11), by applying the above-defined variant of the Laplace
transform to (3.10), we get

ˆ̄u(pn, s)
sθ

=

(
−ap2

n −
v2

4a

)
ˆ̄u(pn, s) +

apnm0

s
, (3.12)

ˆ̄u(pn, s) = sθ
(
−ap2

n −
v2

4a

)
ˆ̄u(pn, s) + apnm0sθ−1, (3.13)

ˆ̄u(pn, s) − sθ
(
−ap2

n −
v2

4a

)
ˆ̄u(pn, s) = apnm0sθ−1, (3.14)

ˆ̄u(pn, s)
[

1 − sθ
(
−ap2

n −
v2

4a

)]
= apnm0sθ−1, (3.15)

and

ˆ̄u(pn, s) =
apnm0sθ−1[

1 − sθ
(
−ap2

n − v2

4a

)] . (3.16)
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Now, by using the inverse transform of (3.16), we can see that

u(x, t) =
2am0tθ−1

L

∞∑
n=1

pn sin(pnx)Eθ,1

[
−

(
ap2

n +
v2

4a

)
tθ
]

. (3.17)

We eventually achieve the fundamental approach to the Dirichlet issue by turning to the
subject of quantity q(x, t) in accordance with (3.5):

q(x, t) =
2am0tθ−1

L
exp

(v x
2a

) ∞∑
n=1

pn sin(pnx)Eθ,1

[
−

(
ap2

n +
v2

4a

)
tθ
]

. (3.18)

Thus, by using the non-dimensional quantities:

x̄ =
x
L

, p̄n = Lpn = nπ, v̄ =
vL
a

, k =

√
at

θ
2

L
, q̄(x̄, k) =

L2q(x̄, k)
am0tθ−1 , (3.19)

we obtain

q̄(x̄, k) = 2 exp
(

v̄x̄
2

) ∞∑
n=1

p̄n sin(p̄nx̄)Eθ

[
−k2

(
p̄2
n +

v̄2

4

)]
, (3.20)

which is the fundamental solution of (3.1).
The Mittag-Leffler functions Eθ(z) and Eθ,λ(z) are implemented in most of the math-

ematical software, allowing a computational analysis of the solution which we have de-
rived here. One can use, for instance, the library(MittagLeffleR) of the R-software. As
some illustrative examples, figures 1 shows how the fundamental solution (3.20), which
depends on the fractional derivative’s order (α = 0.2) and distance x̄ . Similarly, 2 and 3
depict the solution q̄(x̄, k) for varying values of x̄ and θ and for fixed values for (v̄, k), with

(v̄, k) = (15, 0.1), (5, 1) and (1, 5),

respectively.

B. A function’s constant boundary value

Currently, the Dirichlet boundary condition, zero initial condition, time-fractional mode
of (1.1) and the constant boundary-values of sought-after function, that is

q(0, t) = q0, (3.21)

and
q(L, t) = 0. (3.22)

As explained previously, the new function u is included in (3.5), and the result in the
transform domain is given by finite Sin-Fourier transform concerning spatial coordinate x
and variant of the Laplace transform about time t. Therefore, we have

∂θū(pn, t)
∂tθ

=

(
−ap2

n −
v2

4a

)
ū(pn, t) + apnp0, (3.23)
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Figure 1: Plot of the solution q̄(x̄, k) for (v̄, k) = (15, 0.1).
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Figure 2: Plot of the solution q̄(x̄, k) for (v̄, k) = (5, 1).

ˆ̄u(pn, s)
sθ

=

(
−ap2

n −
v2

4a

)
ˆ̄u(pn, s) + apnq0, (3.24)

ˆ̄u(pn, s) = sθ
(
−ap2

n −
v2

4a

)
ˆ̄u(pn, s) + apnq0sθ, (3.25)

ˆ̄u(pn, s) − sθ
(
−ap2

n −
v2

4a

)
ˆ̄u(pn, s) = apnq0sθ, (3.26)
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Figure 3: Plot of the solution q̄(x̄, k) for (v̄, k) = (1, 5).

ˆ̄u(pn, s)
[

1 − sθ
(
−ap2

n −
v2

4a

)]
= apnq0sθ, (3.27)

and

ˆ̄u(pn, s) =
apnq0sθ[

1 − sθ
(
−ap2

n − v2

4a

)] . (3.28)

Thus, by taking into account the fact that

1[
1 − sθ(−ap2

n − v2

4a)
] =

1(
ap2

n + v2

4a

)
1 −

1

sθ
[

1
sθ − (−ap2

n − v2

4a)
]
 , (3.29)

we obtain

ˆ̄u(pn, s) =
apnq0(

ap2
n + v2

4a

)
1 −

1

sθ
[

1
sθ − (−ap2

n − v2

4a)
]
 , (3.30)

which after the inversion of the integral transform, yields

u(x, t) =
2q0tθ

L

∞∑
n=1

pn sin(pnx)(
p2
n + v2

4a

) {
1 − Eθ,1

[
−

(
ap2

n +
v2

4a

)
tθ
]}

. (3.31)

We now consider the following series expansion [? ]:

∞∑
n=1

n sin(nz)
n2 + b2 =

π

2
sinh[(π− z)b]

sinh[(πb)]
. (3.32)
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Going back to the factor q(x, t) from (3.5), we thus find that

q(x, t) = q0tθ exp
(v x

2a

){
sinh

[ v
2a(L− x)

]
sinh(vL

2a )
−

2
L

∞∑
n=1

pn sin(pnx)

p2
n + v2

4a

Eθ

[
−

(
ap2

n +
v2

4a

)
tθ
]}

,

(3.33)
and the non-dimensional form is given by

q̄(x̄, k) = exp
(

v̄x̄
2

){
sinh

[ v̄
2 (1 − x̄)

]
sinh( v̄

2 )
− 2

∞∑
n=1

p̄n sin(p̄nx̄)

p̄2
n + v̄2

4

Eθ

[
−k2

(
p̄2
n +

v̄2

4

)]}
,

(3.34)
where

q̄(x̄, k) =
q(x̄,kk)

q0tθ
. (3.35)

The other non-dimensional quantities are the same as in (3.19). To end this section, we
observe that figures 4 show how the fundamental solution (3.34) which depends on the
fractional derivative’s order (α = 0.2) and distance x̄. Similarly, 5 and 6 depict the solution
q̄(x̄, qk) for varying values of x̄ and θ and for fixed values for (v̄, k), with

(v̄, k) = (15, 0.1), (5, 1) and (1, 5),

respectively.
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Figure 4: Plot of the solution q̄(x̄, k) for (v̄, k) = (15, 0.1).

4. Conclusion

The time-fractional advection-diffusion problem was studied using the conventional
Laplace transform by Povstenko et al. [15]. In this study, we have effectively addressed
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Figure 5: Plot of the solution q̄(x̄, k) for (v̄, k) = (5, 1).
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Figure 6: Plot of the solution q̄(x̄, k) for (v̄, k) = (1, 5).

the solution of the time-fractional advection diffusion problem with the Liouville-Caputo
approach using the Fourier transform and the specified variant of the Laplace transform.
In order to carry out the desired function, we have used the integral transform technique
to arrive at a solution when the boundary conditions are constant. Moreover, we have
presented (1.1) in time-fractional mode along with the initial condition (3.2) and the
boundary condition of Dirichlet type with the desired function’s constant boundary val-
ues. We have displayed some graphics to illustrate our theoretical findings in this article.
This graphical illustration shows the relationship between the diffusion concerning the
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distance, keeping k and θ as constant. As per the solution obtained by the presented
method, the dependency of concentration q̄ with different values of θ and x̄ from 0.2 to
1, keeping v̄ and k constant as (15, 0.1), (5,1) and (1,5) considering zero initial condition
as well as constant boundary condition. Since the advection-diffusion equation can be
used in various real-world situations, its variable coefficients will mean different things
depending on the context in which it is used. As a result, the solute dispersion problem
will provide the basis for the mathematical formulation of advection diffusion in this con-
text. Since the medium in this issue is considered inhomogeneous, the velocity is thought
to depend on the location variable. The mathematical formulation is the same; the second
instance merely adds two additional equations.
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