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Abstract

The major goal of this research paper is to investigate the existence and uniqueness of an implicit
fractional pantograph equation in the frame of the Hilfer-Katugampola operator on the finite interval [a, b]
with mixed nonlocal conditions. Our analysis of the existence and uniqueness of solutions depends on some
fixed point theorems such as Banach and Krasnoselskii. Moreover, we discuss the dependence of solutions on
mixed nonlocal conditions by means of d-approximated solution. As an application, we provide an example
to illustrate the validity of our results.
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1. Introduction

In the last three decades, the study of fractional calculus has very caught importance
and popularity among researchers due to their applicability in modeling many phenomena
in the real-world such as propagation in complex medium, polymers, biological tissues,
expansion of universe, earth sediments, etc. For more details, we refer the reader to the
monographs [1, 2, 3, 4], and references therein. In order to meet the need of modeling
more real-world problems in different fields of science and engineering, some researchers
have realized necessary finding new fractional derivatives (FD). In this work, we consider
Hilfer-Katugampola type fractional derivative which interpolates some fractional deriva-
tives such as, Hilfer, Hilfer-Hadamard, Riemann-Liouville, Hadamard, Caputo, Caputo-
Hadamard, see [4, 5, 6, 7, 8] and the references therein. On the other hand, some re-
searchers via different types of fractional derivatives studied the existence and stability of
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Ulam-Hyers, which can be found in [10, 11, 12, 13, 14, 15, 16, 17, 18]. A pantograph is
an important tool employed in electric trains in order to collect electric currents from the
overload lines. The pantograph equations have been modeled by Ockendon and Tayler in
[19]. Persuaded by the importance of these equations, many researchers have generalized
these equations into various kinds and presented the solvability theoretically and numeri-
cally portion of such problems. For additional details, see [20, 21, 22, 23, 24, 25, 26] and
the references therein. Recently, Abdo et al. [27] Considered the pantograph (FDEs)

{ ABCDQ+8(G) = f(Uzﬁ(G);S(H(U)));H € (0/1)
19((1) = Z]Tl:l T)'lg(K]'), Kj € (a,T) .

The authors by means of Banach’s contraction principle and Krasnoselskii fixed point the-
orem studied the existence and uniqueness results and by using Gronwall’s inequality in
the frame of (ABC) discussed the Ulam-Hyers stabilities. Asawasamrit et. al. [28] by
means of some fixed point theorems studied existence, uniqueness and different type of
Ulam stability results of the following problem

D99(o) =f(0,9(0)), 0<q<1l,0€]:=[0,T]
i vidmi) + X5 TjDé\iﬁ(K]‘) FYM 00N (@) =A€ER,

where D9, DM are the Caputo (FD) of order q and Aj, respectively, 0 < A; < g < 1,
j =12,..,n, Yi,T)',eT € R and Ni, K]',(Di S ]

On the other hand, Almalahi et. al. [29] via some properties of Mittag-Leffler functions
and some fixed point theorems studied the existence, uniqueness and different type of
Ulam stability results of the following Hilfer-Katugampola (FDEs)

PDIPY(0) = Ad(0) +f(0,9(0)), A<0, 0<a <1, 0< B <1, o€]:=(0T]
PR YO0 =Y ™ 8 PId(ti), q<y=q+B—qB <1 Ti€(aTl],

where F’Dg’f(‘) denotes the Hilfer-Katugampola (FD) of order q € (0,1) and type B €
[0,1] and 93(1): Y is a generalized fractional integral (GFI) of order 1 —v, p > 0. Here
f:J] xR — R is a continuous function, t;(1 =0, 1,2, ...., m) are prefixed points satisfying
O<m << ng<T,and7\<O,6i€1R.

Motivated by the above argumentations, the intent of this work is to investigate the
existence and uniqueness of solutions as well as the dependence of solutions by means of
b -approximated solution of the implicit fractional pantograph equation:

{ PDIPH(0) = f(0,9(0),9(1(0)),° DIPH(0)), w e (0,1),0 € J:=[a,T] an

. As,
S 0PIV (@) =B Y 1 PDYPH(k) € R.

where ng’P (1),° D?IL’B (-) are the Hilfer-Katugampola (FD) of order q and A; respectively,
qe(0,1)andtypep €[0,1, g =>N+pB (1—2%),(j=0,1,2,..,n),° Ji’i, °Jd, are the gen-
eralized fractional integral of order Vs, q, (i = 0,1,2,...., m) respectively, 0;,7; € R —{0}
and @i, k; € | are prefixed points. f: J x R> — R is continuous function. We confirm
that our proposed problem (1.1) is a fractional integral multi-order and fractional deriva-
tive multi-order problem, which means our results yield some results related to choosing
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the parameters. In addition, we note that, if 6; = 0 then (1.1) reduce to implicit fractional
pantograph equations subjected to fractional derivative multi-order conditions, if 13 = 0
then (1.1) reduce to implicit fractional pantograph equations subjected to fractional in-
tegral multi-order conditions. We investigate the existence and uniqueness of solution as
well as dependence of solutions and uniqueness by means of 4-approximated solution of
the proposed problem. The fractional derivative "DE’P is an interpolator some fractional
derivatives such as Hilfer (if p = 1), Hilfer-Hadamard (if p = 0™), generalized (if B = 0
), Caputo-type (if B = 1), Riemann-Liouville (if = 0, p = 1), Hadamard (if § = 0,
p = 0™), Caputo (if 8 = 0, p = 1), Caputo-Hadamard (if p = 1, p = 07), Liouville (if
B=0,p=1,a=0)and Weyl (if =0, p =1, a = —0c0). To the best of our knowledge,
this is the first work dealing with the implicit fractional pantograph equations in the frame
of Hilfer-Katugampola operator. In consequence, the results of this work will be a useful
contribution to the existing literature on this topic.

This paper is organized as follows. In Section 2, we present notations, auxiliary lem-
mas and some basic definitions which are used throughout the paper. In Section 3, we
discuss the existence and uniqueness results for a system 1.1. In Section 4, we discuss
dependence and uniqueness of solutions by means of §-approximate solution. In section
5, we provide some examples to illustrate the validity of our results. Concluding remarks
about our results in the last section.

2. Background material and auxiliary results

In order to achieve our main purposes, we present here some definitions and basic
auxiliary results that are required throughout our paper. Let 0 < a < T,] := [a, T] and let
C (J) be the Banach space of all continuous function from ] into R with supremum norm
9], = sup{®(o): 0 €]} Let XE (J),(c € R,1 < P < o) be the space of the complex
Lebesgue measurable functions 9 on J for which [|9]/xp < oo, where

1
T P
d
19 = (J 109( )P “) .
C a 0‘

In the case, ¢ = %, the space Xg N =Ly, (]).

Definition 2.1. [30] Let ¢ € R;,c € R and 9(0) € X¥ (J). Then, the generalized left-
sided fractional integral I, of order q > 0 is defined by

P39.8(0) = — r<gp_3p>ql P1(s)d 0 2.1)
0) = s s)ds, o>a,p>0. .
o Ma)Ja\ ¢ P
Definition 2.2. [30] The Katugampola (FD) of order q € Ry \ IN, p > 0 is defined by:
D _ 1—p & J p—1 (00 =S 2.2

where n = [q] + 1.
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Definition 2.3. [31] Let n—1 < q < nand 0 < $ < 1. Then, the Hilfer-Katugampola
(FD) with respect to o, with p > 0 of a function ¥ is defined by:

n
aBg(e) — pqBn—a) [ 1-p d (1-B)(n—q)
D d(o) = PI .+ <O‘ pdcr) T s ¥(0),
the operator ng’f can be expressed by
B(n—q) d\"
n— _ _
ngf — pj(ﬁ q (0_1 pdG> pj1(’11+‘y
= P eDY., y=q+nB—aqB, (2.3)

In this paper, due to q € (0,1), we consider n = 1.

Lemma 2.4. [31] Let PJ1, and PDY, are generalized left-sided fractional integral and
derivative respectively defined in (2.1) and (2.2). Then, for q > 0 and 3 > 0, we have

od —qP\ P! B r'p) od — qP\9dth-1
(pjg+< p ) )(0) - F(B+q)( p ) az0p=0

q_ e\ 491
<9D2+<6 pa) )(0) - 0,0<q<1.

Lemma 2.5. Let y = q+ B — qB where q € (0,1) and B € [0,1]. If 9 € CY , (]), then

PIY. PDY, 9 = Pgd, PDIPy,
1—
DY, P79 9 = epPl-dly,

Lemma 2.6. [31] Let q € (0,1) . Then for o € ], we have

pyl—vy q_ ~p\Y—1
pngr ng+‘9(0) =d(0) — = = (G - ) ‘

ry) P

Theorem 2.7. [32] Let X be a Banach space and K C X be a nonempty, closed, convex and
bounded. If there is tow operators ®', ®? such that for all u,v € X, imply ®'u+ ®%v € X
also ®! is compact and continuous and ®? is a contraction mapping, then there exists a
function z € K such that z = ®'z + ®?z.

Lemma 2.8. Lety = q+B—qB, q € (0,1) and B € [0,1]. If q = A+ B (1—A;) and
9 e C(]), then
PDMPPIA 3(0) = PIIMY(0).

Proof. From definition 2.3, n = 1, we have

d) °31Y8(0),

DYoo) = P9 (o0



M.A. Almalahi, S.K. Panchal / On Hilfer-Katugampola operator 5

where y = A+ 3 —AB. Then, we have

v 1, d -
DY (I o) = PR (o0 ) Py (33 000)
= pgPON) (olpd‘L) P 9Y(0)
- d
= "JEE M (Gl_pdo>

Theorem 2.9. Lety = q+p—qp, q € (0,1), B € [0,1] and h : ] — R be a continuous
function such that h € C (]). A function & € CY (]) is a solution of problem

{ PDIFI(0) =h(0), 0<q<1,0< B<loc] (2.4)

S 0PI (@) =B Y 1 DN PO(k), B € R.
if and only if 9 satisfies the following mixed type integral

oP—ar\Y ! n
V(o) = ( q,prh/)) ( Ze qu_'_lplh ; 'qu Alh ( ))

i=1
+ "Jg+h(s) (o), (2.5)

- 0; @f —ap YT & T K¢ —ap\ Y N
Y= - L ) ) 0 (26
Zr(vwbd ( P > t2 Ty —Nj) p 70 (26)

i=1 j=1
Proof. In view of (2.3), first equation of (2.4) can be written as
pgBI=a) oY 9(0) = h(o) 2.7)

Applying the operator °J g+ to both sides of (2.7) and using Lemma 2.6, we get

do) =

7YY (a) (oq —af
rty) P

Denoting ¢ = F’Jla_ﬂ’%(a) in (2.8) yields

-1
8(0) = — <Gp_ap>y + 39, h(s) (o). (2.9)

v—1
> + °39, h(s)(0). (2.8)

I'(y) P
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Taking the operator pﬂg’i into both sides of (2.9) with replace o by @; and using lemma
2.4, we get

P_ AP y+i—1
oeibi N C w; —a pqq+bi . 21
Joid (@) My + 01 ( 0 > + PI I TTh(s) (@4). (2.10)

Taking again the operator pDz’;’Binto both sides of (2.9) with replace o by k; and using
lemmas 2.4, 2.8, we obtain

S OONPRURI | Sl R R 2.11
at (K]’)—r(,y_?\j) 0 + a+ (S)(K)’)~ (2.11)

Thus

+ 201 PILTs) +Z¢] P39 Mh(s) (k)

It follows from the condition (3_i", 6; "Iah‘)(@i) =B— Zjn:1 T pDZ\LL’B%(Kj)) that

n
=g B Lot @)=L g i e ()] @
i=1 j=1

Substitute (2.12) into (2.9), we get (2.5). Conversely, let & € CY (]) satisfying (2.5). We
need to show that 9 also satisfies (2.4). For that, applying the operator PD}, on both
sides of (2.5). Then, from Lemmas 2.4 and 2.5, we get

DY, d(0) = PDPI"Vn (o) (2.13)

By the definition of CY (J) and & € CY (J), we have F’DLS € C(J). Consequently,
nggfq)ﬁ = "D“’IlfB 1=4)y ¢ C(]). For any 9 € C(J), o € J, it is obvious that

F’I;B(l_q)ﬁ € C'(J). Now, multiplying both sides of (2.13) by pIB (19) y1sing lemma
2.6, we can write

pllfﬁ(lfcﬂh(a) (Gq - ap> B(1—q)—1 (2 14)

"D (o) = hlo) ~ —FEr—g) 5
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where pll B1=a)p(q) = 0. Hence (2.14) reduces to
PDIPY(0) = h(o).

On the other hand, applying the operator F’J‘A’i and F’DﬁL’B to both sides of (2.5) with
using Lemmas 2.8 and 2.4, fori=1,2,...,m, and j = 1,2, ...n, we obtain

m (a,f_ap)ll)iﬂf—l
Ze Pj‘l’l Zel lb1+Y \;
m n
B— Y 6; P79 Vin(s) Z °79 M h(s) (k;)
i=1 j=1

+Ze PIITYiR(s) (@4),

1 <K$—ap>y Ai—1
;B P
E Tj pD B(kj) E T]

Y
j=1

n
Ze PIITVins) Z 5 P79 M h(s) (k)

i=1
n
+3 1 PITNNGs) (),
j=1

where V¥ is given by (2.6). Therefore

m n

. Aj,
Y 0 PIi(@i) + T PDNPO(k;) =B
i=1

j=1

The lemma is proved. O

3. Exestence of solution

In this part, we will prove our main results such as existence and uniqueness of solution
for proposed problem. In order to obtain our results, we deliver the following assumptions

(H): f:J xR xR xR — R is a continuous function and there exist a constant R > 0
such that

|f(0—lulvl Z) - f(O—,ﬁ,V,ZN g %f (|u_ﬁ| + |V—V| + |Z’_2|) s

forany u,v,z,u,v,z€ Rand o € J.
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(Hy): The following inequality holds
A 2Ry i 0 (aaf —af > b
1=R)YT(y) \ = T(a+vi+1) P

kP — P\ 9N
j
+qu 7\—|—1< P ) )

2R 1 TP —aP\ 9
1 3.1
+1—mfr(q+1)< 0 ) < @D

In the light of Theorem 2.9, we have the following theorem.

Theorem 3.1. Let y = q+ 3 —qp whereq € (0,1)and p € [0,1],let F: [ x Rx RxR —
R be a continuous function such that F € C(]) for all ¥ € C(]). A functiond € CY (J) is a
solution of problem (1.1) if and only if ¥ is the fixed point (FP) of the operator 8 : C (J) —
C (J) defined as

o?—a?\Y ! m
8¥(o) = <‘;F(y)) <B—izlei IV, (s) (@1)

=Y 1 PId N E (s) (Kj)) + P79, Fy(s) (o), (3.2)
=1

where Fy(s) = f(s,9(s),9(1(s)),» D¥P9(s)).

Theorem 3.2. Assume that (Hy) and (H) holds, Then the problem (1.1) has a unique
solution in CY (J).

Proof. Step (1): We will show that the operator § which defined in 3.2 has a unique fixed
point & € C (]J). For thatlet 8,v € C(J), o € J, then, we have

¥ —v|| = max|8d(o) — Sv(o)|
o]

o?—af ' m
( p ) . +y o .
< Sy (iz_lelpm Fo(s) —Fu(s)l (@1)

n

+) T PIITN Fy(s) — Fy(s)] (Kj)) + PI3. [Fo(s) —Fu(s)l (o)

j=1

L S . pqq+bi B )
S =% vrey) <;9 Jar 1B(s) —v(s)l (@1)

+ ZTJ- "321“ B (s) —v(s)| (K]-)> + 12& °gd. 19(s) —v(s)l (o)
ji=1
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2R @f — P\ YT
< e Z (B) -
(1— %) YTy Fq+¢l+1) o

n e o\ 97N
T k! —a
+ ) ) d—v
; F(q—?\j+1) ( P ) H )

)=

P <Gp_ap)q\lﬁ—vll
1-R¢T(q+1) P

< Alp—v].

Due to (3.1), the operator § is a contraction mapping on C (]).
Step (2): We need to show that such a fixed point & € C(]) is actually in CY (]). Let
9* be a unique fixed point of operator 8 in C (]), then

oP—ar\Y
9*(0) = <qu>< Ze Iy (s) (@4)

n
_ZTj pjgiy\jFﬁ*(S) (k) | + PI Fo=(s) (o).
j=1
Applying D! to both sides of the last equation, using Lemmas 2.4 and 2.5, we have
PDY.9*(0) = "DV, PIL.Foe(s) (o) = DL VFyu(s) (0),
Since vy > q, by (H;1), we have D[3 Fg*(s) (o) € C(J), and hence pDZpS*(G) €

C(J). It follows from definition of CY (]) that 9* € CY (]J). As a consequence of the above
steps, we conclude that the problem (1.1) has a unique solution in CY (J). O

Theorem 3.3. Assume that (Hy) holds. If
2R s 0; @P — P dtT¥
N TR (=)
(1- %R0 YY) ZTqrhi+D o

n KP*ap a—A;
Z J <1
1—9% I'q— ?\—l-l )

j=1

then the problem (1.1) has at least one solution on J.

Proof. Consider a closed ball set Q. defined as
Qr=PecC) v <7

withr > where

Aq
1A’

LY o (a’f—ap>q+wl+z r; g -\
WIy) \ Mg +bi+1) P —T(q—A+1) P

)=
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and f = maxgej [Fo(o)|, where Fo(o) = f(0,0,0,0). In order to prove existence solution
by means of Krasnoselskii’s (FPT), we split the operator 8 into tow operators 81,8, such
that 8 = 8§1+8,, where

819(0) := PIT, Fy(s) (o),

and

(5)"
$20(0) = “’(B—Zei PITTFy (s) (@)

i=1
= A

—ZT)- P Es (s) () | -
j=1

Step (I): 819(0) + 829(0) € Q. For the operator 8§; any & € Q,, 0 € J, we have
[819]| = max 819 (o)
o€]

= | PILFy(s) ( )\
< PIA {[Fs(s ) Fo(s)| +[Fo(s)[} (o)
_ 2% < ) 9] + f (aP—ap>q
S (1-R®e)T q+1 Mq+1) P
2R¢ Tp—ap TP —af\
S d-%T q+1 < ) (q+1)( o ) ' 5:3)

For the operator 8, any 9 € Q., 0 € J, we have
1829 = mzeax 1829(0)|

< U(IBHZ@ PIATVE([Fg(s) — Fols) + Fo(s)l) (@)
i=1

+ZTJ P78 (Fa(s) — Fofs) + Fols ))(;))

) +s _ )
< wrm <|B|+;el PIL Yo (5) — Fols)] +[Fo(s) (@:)

+ 3 1 PIEN Fs(s) — (S)+F0(S)}(KJ‘))
j=1
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1 2 m @P_ P q+;
<—|B|+mfz (“)
Ur(y) 1— % &= T( q+wl+1) o
n T kP — aP q—A;
i 2R Z T (v) j r
1=Re  THa—A+v) P
1 i 705 <@§—ap>q+‘“
Wriy) \G Mg +bi+1) P

n i~ a—A;
fT)' ij_ap
3.4
*;r(q—m-ﬂ)( p G4

In the light of (3.3) and (3.4), we have

1819 + Sav||
< max{||819]], [|82v]]}

P S i 0 <@f—ap>q+1‘“
S OYT(y) 1-Re &S Tq+di+1) P

—As
me i K]P—Clp 4 ) .
I'q— ?\+1 p

1 i 1?61 ol —a® i
o (% S
WI(y) \ & Tla+vi+1) P

< MAr+A <

which infers that 8§19 + 8,9 € Q.

Step (II): S, is a contraction mapping. By Theorem 3.1, we deduce that 8 is a contrac-
tion mapping on C (J) and hence 8, is a contraction mapping too.

Step (III): We prove that the operator 8; is compact and continuous.

The continuity of 8; follows from the continuity of f. From (3.3), we have

ol < 2 (T T ('
PSS T RT(q+1) P M(q+1) p '

This means 8, is uniformly bounded. Now we prove the equicontinuous of operator 8.
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For any 01,07 € ], 01 < 02, 9 € Qr, we get
1819 (02) — 819(01)]

1 Jﬁz <o‘§—sp>q_1 o1
— S Fy(s)ds
r'a) Ja P o(s)

o1 P .p q—1
—r(lq)J (Gl . S ) s 1Fy(s)ds
a

HFB()H J'(yl Spil ((OH) q-1 _ (gf _Sp>Q—1> o
a P P

I'(q)
—1
Jozsp—l (GS _sp>q ds
01 p

[Fo ()l
—0 as oy — o7.

N

+

I'(q)

Thus 87 is equicontinuous. Hence, it follows from the Arzela-Ascoli theorem that the
operator 87 is compact on Q.. According to Theorem 2.7, we conclude that § has at least
a fixed point 9* € C (J) and by the same technique of Theorem 3.2, one can show that the
problem (1.1) has at least one solution. O

4. S-approximate solution

Definition 4.1. A function 9 € C (]) satisfying the following inequality
|PDEFo(0) ~Fo(0)]| < B0 €, 4.1)

and
m ' n AR
> 0 PIi0(@i) =B* — Y 15 PDPO(k)), B € R,
i=1 j=1

is called 5-approximate solutions of Hilfer-Katugampola fractional differential (1.1).

Theorem 4.2. Let F: ] x R x R x R — R be a continuous function satisfies the condition
(Hy) for each o € ] and let 91,9, € C(]) be a 6-approximation solutions of the following
Hilfer-Katugampola fractional differential equations

PDIPY, (o) = Fy, (0),

) N A, , 4.2)
S 0; PV (@:) = Bf — X1 1y PDY 0 (xy),

and
PDIPY, (o) = Fy,(0),

. N As,
S 0PIV (@i) = B — 2T pDalﬁﬁz(Kj),

1 01+ TP — P\ ‘BT—B;’
I?: ’92”\1—A<r(q+1)< ) i)

Then
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Proof. Let 91,9, € C(]J) be an b-approximation solutions of the problem (1.1). Then, we
have

51/
(4.3)
)

PDIP9(0) — Fy, (0)| <
< 2/

PDIPY,(0) — Fs, (0)
and B
YN 0: PIYi (@) = Bf — X JL, T PD 9 (k)
A,
2164 pj’i’+%2( ®i) =B; — Z] 1T pDaLB‘(}Z(KJ')'

Applying PJ3. on both sides of the above inequality, and using lemma 2.6, we get

(5=) ()
91(0) — ‘;F(y) B + t;r(y) Ze PIIFVIE (5) (@)

oP—ar\Y 1 n
+<")Z . qu ?\]Fsl( )(Kj)— pﬂﬂﬁsl(s)(cr)

j=1
51 <Gpap>q
rq—+1) P

P ao)y 1 (Gp ao) 1
P By + -~ Ze PISTVIF, (5) (@3)

N

and

oP—ar\Y 1 n
+<")Z P39 N Eg,(s) (k5) — PI9, Fo,(s) (o)
j=1

5y <Gp—ap>q
rq+1) P

Using the fact [x| — [y| < [x —y| < [x] + [y| in the above inequality, we get
|(91(0) —D2(0))]
81498 P—af\9 P |
2 ()

Fg+1) P Wr(y)
ey 2 0 T Fa,(s) — Fa,(s)l (@)
i=1

n

Z 5 PITN R, (s) — Fo, (5)] (k)

"92+ |Fal( s) —Fo,(s)l (o)
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51485 (TP—aP) ‘ T ‘
B —B
r(q+1)( . >”1 2 Ty

My 1 & 0 @f —aP) T
. (B) -l
1—-ReWT(y) = T(q+i+1) P

A —1
N 2R+ 1 i T ij—ap a=AN+Y 161 — ]
1—ReWI(y) &=T(q—Aj+1) P e

=1
2R 1 TP — P\
L < _ )nel—szr

1-RT(q+1)
51+ Tp—ap>q ‘BT_B§|
A9 —9
r(q+1)< 0 vy AP
In consequence, we have
191 — 2|
1 (8,46 (TP—a®\9 [Bf —Bj]
. 4.4
1—A<F(q+1)< p )* V() o

O

Remark 4.3. If 6; = &, = 0 in the inequality (4.3), then 9,9, are solutions of the problem
(1.1) and the inequality (4.4) reduces to

1 ([Bf—Bj
9 — 9| < .

which provides the continuous dependence of the problem (1.1). Also if B} = B3, we have
|91 —92|| = 0, which provides the uniqueness of a solution of problem (1.1).

5. Examples

Example 5.1. Consider the following problem

11
1bd 2419 (o) [+ (5)]+]! f;ze(c)‘
D12+28(0- = l/l 7 o E I = (0/ 1]/
95e2“<1+|8 o) [+[9(5)]+|! D12+28(6)> (5.1
1 91
10 13;9(%) =1-51DX29(1)
Here g = 3, = 5, v = —qB =3 pnu=3m= 1,61 =10 5 ® =3
q=5B=%v=q+B—qp=3u=53m=n=10 =10,7;1 =5 @ = 3,
K1:1/ :]-/ ((l,T]:(0,1],921,11)1—%,7\1:2%31'1(1

24+ P(o)+ [9(5)| +

11
9520 (1+|19 )|+ [9($)] +|'Di29(0)

).
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Thus, f(o,d(0),d(un(0)),? Dg’fﬁ(c)) is continuous and f(-,9(-), 3(A-),P Dg’fﬁ(-)) e C(])
foralld € C(J). Let o € (0,1] and 9,9 € R. Then

(0,001,003 DFH0(0) — 110,301, (3, D 10001
1 _ _ 11 11
< o <\a(o)—8(o)}+(a(;)—a(;)(+ ID229(0) —! D225(0) >

Thus the condition (H;) is satisfied with R = %. Furthermore, by simple calculation, we
get ¥ ~ 11.67 and A ~ 0.049 < 1. Then all the assumptions in Theorem 3.2 are satisfied.
Hence, the problem (5.1) has a unique solution in C2 ([0,1]). Also, A, ~ 0.019 < 1. It
follows from Theorem 3.3 the problem (5.1) has at least one solution.

Example 5.2. Consider the following problem

11
:D29(0) = . , oe]:=(01],
46+3<1+|a(c)\+\a(g)|+ in;Zs(a)> (5.2)
1 91
5295 9(8) =1-10 2D2?9(3)
Here q = %/B = %/Y = q+‘3_q‘3 = %Im:n: LHZ 2/91 5/T1 - 10/ w1 = gl
ki=3B=1(aT=(0,1],p=1%11 =1 A = 5 and
11 1
(0,9(c),9(3),} D}*9(0)) =

11
4043 <1 +19(0)|+[9(Z)] +|2D7?9(0)

. Thus, f(0,9(0),3(1(0)),? D¥PH(0)) is continuous and (-, 9(-), (u(-)),> DIPH()) € C())
foralld® € C(J). Let o € (0,1] and 9,9 € R. Then

’f (Grﬁ((’)rﬂ(g)ﬁD%éﬂ(o))—f(c,a(o),a(g),%D%éa(a))’
! 3 3 111 FRN Y
< g <\8(a)6(o)}+(a(§)a(;)(+ ID229(0) 1 DI %)>.

Thus the condition (H;) is satisfied with R = é. Furthermore, by simple calculation, we
get W ~ 7.27 and A ~ 0.031 < 1. Then all the assumptions in Theorem 3.2 are satisfied.
Hence, the problem (5.1) has a unique solution in C: ([0,1]). Also, A, < 1. It follows from
Theorem 3.3 the problem (5.1) has at least one solution.

6. Conclusion

In this work, the existence and uniqueness of the nonlocal boundary value problem for
differential equation with Hilfer-Katugampola fractional derivative were discussed. Kras-
noselskii fixed point theorem and Banach contraction principle are utilized to obtain our
results. The dependence of solutions and uniqueness have been obtained by means of §
-approximated solution. In conclusion, Hilfer-Katugampola fractional derivative can be
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used as a powerful tool for studying the dynamical behavior of many real-world prob-
lems. The acquired results which are obtained in the current paper are more general
and cover many of the parallel problems that contain special cases of function because
our proposed problem contains a global fractional derivative that integrates many classic
fractional derivatives.
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