Journal of Fractional Calculus and Nonlinear Systems

ifcns.sabapub.com ISSN: 2709-9547

J Frac Calc & Nonlinear Sys (2022)3(1):12-19doi:10.48185/jfcns.v3i1.391

Nabla generalized fractional Riemann-Liouville calculus on time scales with an application to dynamic equations

Amin Benaissa Cherif a,* D, Fatima Zohra Ladranib D

- ^a Department of Mathematics, Faculty of Mathematics and Informatics, University of Science and Technology of Oran Mohamed-Boudiaf (USTOMB), El Mnaouar, BP 1505, Bir El Djir, Oran, 31000, Algeria.
- ^b Department of Exact Sciences, Higher Training Teacher's School of Oran Ammour Ahmed (ENSO), Oran, 31000, Algeria.

• Received: 12 November 2021

• Accepted: 10 May 2022

• Published Online:28 June 2022

Abstract

We introduce more general concepts of nabla Riemann-Liouville fractional integrals and derivatives on time scales. Such generalizations on time scales help us to study relations between fractional difference equations and fractional differential equations. Sufficient conditions for the existence and uniqueness of the solution to an initial value problem are described by nabla derivatives on time scales. Some properties of the new operator are proved and illustrated with examples.

Keywords: Time scales, fractional derivatives, dynamic equations, initial value problems 2010 MSC: 26A33, 34K37, 34N05.

1. Introduction

In recent decades, fractal calculus and fractional calculus have been becoming hot topics in both mathematics and engineering for nondifferential solutions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. So the use of the fractional derivative has gained noticeable improvement and attention in many branches of sciences [13, 14, 15]. Another important area of study is dynamic equations on time scales, which goes back to 1988 and the work of Aulbach and Hilger, and has been used with success to unify differential and difference equations [20]. In 2016, Benkhettou et al. [7], introduced a concept of fractional derivative of Riemann-Liouville on time scales. Several authors have obtained important results about different subjects on time scales. See for instance M. Rchid et al [8], A. Abdeljawad et al [9], T. Gülsen et al [10].

^{*}Corresponding author: amin.benaissacherif@univ-usto.dz

This article is organized as follows, we define a Riemann–Liouville generalized fractional nabla derivative on time scales (Definition 3.1) and Riemann–Liouville generalized fractional nabla integrations on time scales (Definition 3.2) help us to study of their important properties. This is the first step in this direction. On the other hand, we consider the following initial value problem:

$$\begin{cases}
\beta x^{\nabla}(t) +_{\alpha}^{\mathbb{T}} D_{y,t,\nabla}^{\alpha}(x(t)) = f(t,x(t)), \text{ for } t \in \mathcal{J}_{\alpha,b}, \\
x(\alpha) = 0,
\end{cases} (1.1)$$

where $\alpha \in (0,1)$, ${}^{\mathbb{T}}_{\alpha}D^{\alpha}_{y,t,\nabla}$ is the Riemann–Liouville generalized fractional nabla derivative with respect to function y and $\mathcal{J}_{\alpha,b} = [\alpha,\rho\,(b)]_{\mathbb{T}}$. The problem (1.1) will be studied under the following assumptions $f \in \mathcal{C}\left(\mathcal{J}_{\alpha,b} \times \mathbb{R}, \mathbb{R}\right)$ and $\beta \neq 0$. Our main results give necessary and sufficient conditions for the existence and uniqueness of solution to problem (1.1).

The rest of the paper is structured as follows: Section 2 contains some definitions and facts of time scale calculus. In Section 3, we establish some new properties of the Riemann-Liouville fractional nabla operator and, we investigate some IVPs for some classes fractional dynamic equations. In Section 4, we illustrate our results with examples. Some conclusions are discussed in Section 5.

2. Preliminaries

Let $\mathbb T$ be a time scale, which is a closed subset of $\mathbb R$. For $t \in \mathbb T$, we define the forward and backward jump operators σ , $\rho : \mathbb T \to \mathbb T$ by :

$$\sigma(t) := inf\{s \in \mathbb{T} : s > t\} \quad \text{and} \quad \rho(t) := sup\{s \in \mathbb{T} : s < t\},$$

respectively. We say that t is right-scattered (resp., left-scattered) if $\sigma(t) > t$ (resp., if $\rho(t) < t$); that t is isolated if it is right-scattered and left-scattered. Also, if $t < \sup \mathbb{T}$ and $t = \sigma(t)$, we say that t is right-dense. If $t > \inf \mathbb{T}$ and $t = \rho(t)$, we say that t is left dense. Points that are right dense and left dense are called dense. The graininess function $\mu: \mathbb{T} \to [0,\infty)$ is defined by $\mu(t) := \sigma(t) - t$. If \mathbb{T} has a left-scattered maximum M, then $\mathbb{T}^k = \mathbb{T} \setminus \{M\}$, otherwise, $\mathbb{T}^k = \mathbb{T}$. The backward graininess $\nu: \mathbb{T} \to [0,\infty)$ is defined by $\nu(t) := t - \rho(t)$. If \mathbb{T} has a right-scattered minimum m, then $\mathbb{T}_k = \mathbb{T} \setminus \{m\}$, otherwise, $\mathbb{T}_k = \mathbb{T}$. If \mathbb{T} is bounded, then $\mathbb{T}_0 \subseteq \mathbb{T}_k$ where $\mathbb{T}_0 = \mathbb{T} \setminus \{m \in \mathbb{T}\}$. For $\alpha, b \in \mathbb{T}$ we define the closed interval $[\alpha, b]_{\mathbb{T}} := \{t \in \mathbb{T}: \alpha \leqslant t \leqslant b\}$.

The function $f:\mathbb{T}\to\mathbb{R}$ is called ld-continuous provided it is continuous at left-dense point in \mathbb{T} and has a right-sided limits exist at right-dense points in \mathbb{T} , write $f\in\mathcal{C}_{ld}(\mathbb{T},\mathbb{R})$. For a function $f:\mathbb{T}\to\mathbb{R}$, the function f^ρ denotes $f\circ\rho$. The ∇ -derivative of $f:\mathbb{T}\to\mathbb{R}$ at a left dense point t is defined by :

$$f^{\nabla}(t) = \lim_{s \to t} \frac{f(t) - f(s)}{t - s}.$$

If t is left scattered, then the Δ -derivative is defined by :

$$f^{\nabla}(t) = \frac{f(t) - f^{\rho}(t)}{v(t)}.$$

The set of functions $f:\mathbb{T}\to\mathbb{R}$ which are ∇ -differentiable and whose ∇ -derivative is ld-continuous is denoted by : $\mathcal{C}^1_{ld}\left(\mathbb{T},\mathbb{R}\right)$.

In what follows, with $\mathcal{C}([a,b]_{\mathbb{T}},\mathbb{R})$ we denote the Banach space of all continuous functions from $[a,b]_{\mathbb{T}}$ into \mathbb{R} , where $[a,b]_{\mathbb{T}}=[a,b]\cap\mathbb{T}$, with the norm

$$\|\mathbf{x}\|_{\infty} := \sup\{|\mathbf{x}(t)| : t \in [\mathfrak{a}, \mathfrak{b}]_{\mathbb{T}}\}.$$

Let $[a,b]_{\mathbb{T}}$ denote a closed bounded interval in \mathbb{T} . A function $F:[a,b]_{\mathbb{T}}\to\mathbb{R}$ is called a delta antiderivative function $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ provided F is continuous on $[a,b]_{\mathbb{T}}$, delta differentiable on [a,b), and F^{∇} (t) = f(t), for all $t\in[a,b)$. Then, we define the ∇ -integral of f from a to b by :

$$\int_{a}^{b} f(t) \nabla t = F(b) - F(a).$$

3. Main Results

We introduce a new notion of generalized fractional nabla derivative on time scales. Before that, we define the generalized fractional nabla integral on a time scale \mathbb{T} .

Definition 3.1 (Riemann-Liouville generalized fractional nabla integral on time scales). Suppose $\mathbb T$ is a time scale, $[\mathfrak a,\mathfrak b]$ is an interval of $\mathbb T$, $\mathfrak h$ is an integrable function on $[\mathfrak a,\mathfrak b]$, and $\mathfrak g$ is monotone having a nabla derivative $\mathfrak g$ with $\mathfrak g^\nabla(\mathfrak t)\neq 0$ for any $\mathfrak t\in [\mathfrak a,\mathfrak b]$. Let $0<\alpha<1$. Then the (left) generalized fractional nabla integral of order α of $\mathfrak h$ is defined by :

$$_{\alpha}^{\mathbb{T}}I_{g,t,\nabla}^{\alpha}h(t) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} g^{\nabla}(s) (g(t) - g(s))^{\alpha - 1} h(s) \nabla s,$$

where Γ is the gamma function.

We introduce Riemann–Liouville generalized fractional nabla derivative on time scales the following definition.

Definition 3.2. Let \mathbb{T} be a time scale, $t \in \mathbb{T}$, $0 < \alpha < 1$, $h : \mathbb{T} \to \mathbb{R}$ and g is monotone having a nabla derivative g with $g^{\nabla}(t) \neq 0$ for any $t \in [a, b]$. The (left) Riemann–Liouville generalized fractional nabla derivative of order α of h is defined by :

$$_{a}^{\mathbb{T}}D_{g,t,\nabla}^{\alpha}h\left(t\right)=\frac{1}{\Gamma\left(1-\alpha\right)g^{\nabla}\left(t\right)}\left(\int_{a}^{t}g^{\nabla}\left(s\right)\left(g\left(t\right)-g\left(s\right)\right)^{-\alpha}h\left(s\right)\nabla s\right)^{\nabla}.$$

Remark 3.3. If $\mathbb{T} = \mathbb{R}$, then Definitions 3.1 and 3.2 give, respectively, the well-known generalized fractional integral and derivative of Riemann–Liouville.

Lemma 3.4. Let $\alpha \in (0,1)$ and $f : \mathcal{J}_{a,b} \times \mathbb{R} \to \mathbb{R}$. Function $x \in \mathcal{C}(\mathcal{J}_{a,b},\mathbb{R})$ is a solution of the problem (1.1) if and only if it is a solution of the following integral equation:

$$\beta x(t) = \int_{0}^{t} f(s, x(s)) \nabla s - \frac{1}{\Gamma(1-\alpha)} \times \int_{0}^{t} y^{\nabla}(s) (y(t) - y(s))^{-\alpha} x(s) \nabla s.$$

Proof. By Definition 3.1, we have

$$\beta x^{\nabla}(t) = f(t, x(t)) - \frac{1}{\Gamma(1 - \alpha)} \times \left(\int_{\alpha}^{t} y^{\nabla}(s) (y(t) - y(s))^{-\alpha} x(s) \nabla s \right)^{\nabla}$$

$$= f(t, x(t)) - \left(\int_{\alpha}^{T} I_{y,t,\nabla}^{1 - \alpha} x(t) \right)^{\nabla}$$

$$= f(t, x(t)) - \int_{\alpha}^{T} D_{u,t,\nabla}^{\alpha}(x(t)).$$

The proof is complete.

Our main result is based on the Banach fixed point theorem [18].

Theorem 3.5. Let $\alpha \in (0,1)$ and $f \in \mathcal{C}(\mathcal{J}_{a,b} \times \mathbb{R}, \mathbb{R})$, there exists a positive and continuous function $r : \mathcal{J}_{a,b} \to \mathbb{R}$, such that

$$|f(t,x) - f(t,y)| \leqslant r(t)|x - y|, \text{ for } (x,y,t) \in \mathbb{R}^2 \times \mathcal{J}_{a,b}. \tag{3.1}$$

If

$$\sup_{t \in \mathcal{J}_{a,b}} \int_{a}^{t} \left| y^{\nabla}(s) \right| \left| y(t) - y(s) \right|^{-\alpha} \nabla s < \left| \beta \right| - \int_{a}^{b} r(s) \, \nabla s, \tag{3.2}$$

then the problem (1.1) has a unique solution on $\mathcal{J}_{a,b}$.

Proof. We transform the problem (1.1) into a fixed point problem. Consider the operator $T: \mathcal{C}(\mathcal{J}_{\alpha,b},\mathbb{R}) \to \mathcal{C}(\mathcal{J}_{\alpha,b},\mathbb{R})$ defined by :

$$\Im x(t) = \frac{1}{\beta} \int_{a}^{t} f(s, x(s)) \nabla s$$

$$-\frac{1}{\beta \Gamma(1-\alpha)} \int_{a}^{t} y^{\nabla}(s) (y(t) - y(s))^{-\alpha} x(s) \nabla s. \tag{3.3}$$

We need to prove that $\mathcal T$ has a fixed point, which is a unique solution of (1.1) on $\mathcal J_{\mathfrak a,b}$. For that, we show that $\mathcal T$ is a contraction. Let $x_1,x_2\in \mathcal C$ $(\mathcal J_{\mathfrak a,b},\mathbb R)$. For $t\in \mathcal J_{\mathfrak a,b}$, we have

$$\begin{split} \left| \Im x_{1}\left(t\right) - \Im x_{2}\left(t\right) \right| & \leqslant & \frac{1}{\left|\beta\right|} \int_{\alpha}^{t} \left| f\left(s, x_{1}\left(s\right)\right) - f\left(s, x_{2}\left(s\right)\right) \right| \nabla s \\ & + \frac{1}{\Gamma\left(1 - \alpha\right)} \int_{\alpha}^{t} \left| y^{\nabla}\left(s\right) \right| \left| y\left(t\right) - y\left(s\right) \right|^{-\alpha} \left| x_{1}\left(s\right) - x_{2}\left(s\right) \right| \nabla s \\ & \leqslant & \frac{1}{\left|\beta\right|} \left(\int_{\alpha}^{b} r\left(s\right) \nabla s + \int_{\alpha}^{t} \left| y^{\nabla}\left(s\right) \right| \left| y\left(t\right) - y\left(s\right) \right|^{-\alpha} \nabla s \right) \\ & \times \left\| x_{1} - x_{2} \right\| \, . \end{split}$$

By (3.2), \Im is a contraction and thus, by the contraction mapping theorem, we deduce that \Im has a unique fixed point. This fixed point is the unique solution of (1.1).

Now, we give our second main result guarantees the existence of at least one solution of the problem (1.1). This result is based on the Schauder's fixed point theorem [18].

Theorem 3.6. Let $\alpha \in (0,1)$ and $f \in \mathcal{C}(\mathcal{J}_{\alpha,b} \times \mathbb{R}, \mathbb{R})$, there are two functions $r \in \mathcal{C}(\mathcal{J}_{\alpha,b}, [0,\infty))$ and $\phi \in \mathcal{C}(\mathbb{R}, [0,\infty))$, such that

$$|f(t,x)| \leqslant r(t)$$
, for all $(y,t) \times \mathcal{J}_{\alpha,b}$.

Then the problem (1.1) has a solution on $\mathcal{J}_{a,b}$.

Proof. We use Schauder's fixed point theorem to prove that \mathcal{T} defined by (3.3) has a fixed point. The proof is given in several steps.

Step 1: \mathfrak{T} is continuous. Let x_n be a sequence such that $x_n \to x$ in $\mathfrak{C}(\mathfrak{J}_{a,b},\mathbb{R})$. Then, for each $t \in \mathfrak{J}_{a,b}$,

$$\begin{split} \left| \Im x_{n} \left(t \right) - \Im x \left(t \right) \right| & \leq & \frac{1}{\left| \beta \right|} \int_{\alpha}^{t} \left| f \left(s, x_{n} \left(s \right) \right) - f \left(s, x \left(s \right) \right) \right| \nabla s \\ & + \frac{1}{\left| \beta \right| \Gamma \left(1 - \alpha \right)} \int_{\alpha}^{t} \left| y^{\nabla} \left(s \right) \right| \left(y \left(t \right) - y \left(s \right) \right)^{-\alpha} \times \left| x_{n} \left(s \right) - x \left(s \right) \right| \nabla s \\ & \leq & \frac{b - \alpha}{\left| \beta \right|} \sup_{t \in \mathcal{J}_{\alpha, b}} \left| f \left(s, x_{n} \left(s \right) \right) - f \left(s, x \left(s \right) \right) \right| \\ & + \sup_{t \in \mathcal{J}_{\alpha, b}} \left(\int_{\alpha}^{t} \frac{1}{\Gamma \left(1 - \alpha \right)} \left| y^{\nabla} \left(s \right) \right| \left(y \left(t \right) - y \left(s \right) \right)^{-\alpha} \nabla s \right) \times \left\| x_{n} - x \right\| \, . \end{split}$$

Since f is a continuous function, we have $\Im x_n \to \Im x$ in $\mathcal{C}(\mathcal{J}_{\alpha,b},\mathbb{R})$.

Step 2: the map \mathfrak{T} maps bounded sets into bounded sets in $\mathfrak{C}(\mathcal{J}_{a,b},\mathbb{R})$. Indeed, it is enough to show that for any ε there exists a positive constant δ such that, for each $x \in B(0, \varepsilon)$, we have $\mathfrak{T}x \in B(0, \delta)$. By hypothesis, for each $t \in \mathcal{J}_{a,b}$, we get

$$\begin{split} \left| \Im x \left(t \right) \right| & \leq & \frac{1}{\left| \beta \right|} \int_{a}^{t} r \left(s \right) x \nabla s + \frac{1}{\left| \beta \right| \Gamma \left(1 - \alpha \right)} \int_{a}^{t} \left| y^{\nabla} \left(s \right) \right| \left(y \left(t \right) - y \left(s \right) \right)^{-\alpha} \left| x \left(s \right) \right| \nabla s \\ & \leq & \frac{1}{\left| \beta \right|} \int_{a}^{b} r \left(s \right) \nabla s + \frac{\varepsilon}{\left| \lambda \right|} \sup_{t \in \mathcal{J}_{a,b}} \int_{a}^{t} \left| y^{\nabla} \left(s \right) \right| \left(y \left(t \right) - y \left(s \right) \right)^{-\alpha} \left| x \left(s \right) \right| \nabla s \\ & - & \delta \end{split}$$

Step 3: the map $\mathfrak T$ maps bounded sets into equicontinuous sets of $\mathfrak C(\mathfrak J_{\mathfrak a,\mathfrak b},\mathbb R)$. Let $\mathfrak t_1,\mathfrak t_2\in \mathfrak J_{\mathfrak a,\mathfrak b},\mathfrak t_1<\mathfrak t_2$ and $\mathfrak B(0,\epsilon)$ be a bounded set of $\mathfrak C(\mathfrak J_{\mathfrak a,\mathfrak b},\mathbb R)$. For all $x\in \mathfrak B(0,\epsilon)$, we get

$$\begin{split} \left| \Im x \left(t_{2} \right) - \Im x \left(t_{1} \right) \right| & \leq & \frac{1}{\left| \beta \right|} \int_{t_{1}}^{t_{2}} r \left(s \right) \phi \nabla s \\ & + \frac{1}{\left| \beta \right| \Gamma \left(1 - \alpha \right)} \int_{a}^{t_{2}} \left| y^{\nabla} \left(s \right) \right| \left(y \left(t_{2} \right) - y \left(s \right) \right)^{-\alpha} \left| x \left(s \right) \right| \nabla s \\ & - \frac{1}{\left| \beta \right| \Gamma \left(1 - \alpha \right)} \int_{a}^{t_{1}} \left| y^{\nabla} \left(s \right) \right| \left(y \left(t_{1} \right) - y \left(s \right) \right)^{-\alpha} \left| x \left(s \right) \right| \nabla s. \end{split}$$

As $t_1 \to t_2$, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1 to 3, together with the Arzela–Ascoli theorem, we conclude that $\mathcal{T}: \mathcal{C}(\mathcal{J}_{\alpha,b},\mathbb{R}) \to \mathcal{C}(\mathcal{J}_{\alpha,b},\mathbb{R})$ is completely continuous. As a consequence of Schauder's fixed point theorem, we conclude that \mathcal{T} has a fixed point, which is solution of the problem (1.1).

4. Example

In this section, we give an example to illustrate our main result.

Example 4.1. Let $\mathbb{T} = \mathbb{Z}$, $\mathfrak{a} = 1$ and $\mathfrak{b} = \mathfrak{m}$, where $\mathfrak{m} \in \mathbb{N}$. We consider the following initial value problem:

$$\begin{cases} \beta x^{\nabla}(t) + \left(\mathbb{Z} D_{t,\nabla}^{\frac{1}{2}}\right) x(t) = x(t), \text{ for } t \in \mathcal{J}_{1,m-1}, \\ x(1) = 0. \end{cases}$$

$$(4.1)$$

Here, $|\beta| \geqslant 3$, $=\frac{1}{2}$, y(t) = t+1 and f(t,x) = x, for $t \in [1, m-1]_{\mathbb{Z}}$ and $x \in \mathbb{R}$, we find that the problem (4.1) is a private case of the problem (1.1) in $\mathbb{T} = \mathbb{Z}$. Then (3.1) holds. If $m \in \left[1, \frac{|\beta|}{3}\right]$, then (3.2) holds, Thus, the conditions of Theorem 3.5 are satisfied, and we conclude that there is a function $x \in \mathcal{C}(\beta_{1,m-1}, \mathbb{R})$ the unique solution of (4.1).

5. Conclusion

We take $\mathbb{T} = \mathbb{N}$, $\alpha = 1$ and $h, g : \mathbb{T} \to \mathbb{R}$, h(t) = 1, g(t) = t. Let $\alpha > 0$ and b > 0, then by Definition 3.1, we have

$${}_{\alpha}^{N}I_{g,t,\nabla}^{\alpha}h(t) = \frac{1}{\Gamma(\alpha)}\int_{a}^{t}g^{\nabla}(s)\left(g(t) - g(s)\right)^{\alpha - 1}h(s)\nabla s,$$

$$\begin{split} {}^{N}_{\alpha}I^{\alpha}_{g,t,\nabla}h\left(t\right) &= \frac{1}{\Gamma\left(\alpha\right)}\int_{1}^{t}\left(t-s\right)^{\alpha-1}\nabla s = \frac{1}{\Gamma\left(\alpha\right)}\sum\nolimits_{s=2}^{s=t}\left(t-s\right)^{\alpha-1} \\ &= \frac{1}{\Gamma\left(\alpha\right)}\sum\nolimits_{s=1}^{s=t-2}s^{\alpha-1} = \psi\left(t\right). \end{split}$$

By, the last equality, deduce

$$_{\alpha}^{N}I_{g,t,\nabla}^{\alpha+\beta}h\left(t\right)=\frac{1}{\Gamma\left(\alpha+\beta\right)}\sum\nolimits_{s=1}^{s=t-2}s^{\alpha+\beta-1}.$$

On the other hand, we have

$$\begin{split} \left({\underset{g,t,\nabla}{\mathbb{N}}} \, {\underset{\alpha}{\mathbb{N}}} \, I_{g,t,\nabla}^{\alpha} \circ {\underset{\alpha}{\mathbb{N}}} \, I_{g,t,\nabla}^{\alpha} \right) h \left(t \right) &= & \underset{\alpha}{\mathbb{N}} I_{g,t,\nabla}^{\beta} \phi \left(t \right) = \frac{1}{\Gamma \left(\beta \right)} \int_{1}^{t} \left(t - s \right)^{\beta - 1} \phi \left(s \right) \nabla s \\ &= & \frac{1}{\Gamma \left(\beta \right)} \sum\nolimits_{s = 2}^{s = t} \left(t - s \right)^{\beta - 1} \phi \left(s \right). \end{split}$$

Thus

$$\left(_{\alpha}^{\mathbb{N}}I_{g,t,\nabla}^{\beta}\circ_{\alpha}^{\mathbb{N}}I_{g,t,\nabla}^{\alpha}\right)h\left(3\right)\neq_{\alpha}^{\mathbb{N}}I_{g,t,\nabla}^{\alpha}h\left(3\right),$$

we conclude that ${}^{\mathbb{T}}_{\alpha}I^{\beta}_{g,t,\nabla} \circ {}^{\mathbb{T}}_{\alpha}I^{\alpha}_{g,t,\nabla} = {}^{\mathbb{T}}_{\alpha}I^{\alpha}_{g,t,\nabla}$, for $\alpha>0$, $\beta>0$ are not always correct on the time scales.

If we take $\beta = 0$ in the problem (1.1), we get

We consider the following integral equation

$$x(t) = \frac{1}{\Gamma(1-\alpha)} \int_{a}^{t} y^{\nabla}(s) (y(t) - y(s))^{-\alpha} x(s) \nabla s, \text{ for } t \in \mathcal{J}_{a,b}.$$
 (5.2)

Since ${}^{\mathbb{T}}_{\alpha}D^{\alpha}_{y,t,\nabla} \circ {}^{\mathbb{N}}_{\alpha}I^{\beta}_{y,t,\nabla} = \text{Id}$, and ${}^{\mathbb{N}}_{\alpha}I^{\beta}_{y,t,\nabla} \circ D^{\alpha}_{y,t,\nabla} = \text{Id}$ for $\alpha > 0$ are not always correct defined on the time scales. Then, if x is a solution to the problem (5.1) it has no permanent relationship the solution of integral equation 5.2.

Acknowledgement

The author express their sincere gratitude to the editors and referee for careful reading of the original manuscript and useful comments.

References

- [1] Cherif AB and Ladrani FZ (2017). Hardy's-sobolev's-type inequalities on time scale via alpha conformable fractional integral. J. Frac. Calc. Appl. 2(8): 156-165.
- [2] Cherif AB and Ladrani FZ (2017). Asymptotic behavior of solution for a fractional Riemann-Liouville differential equations on time scales. Malaya. J. Math. 3(5): 561-568.
- [3] Cherif AB and Ladrani FZ (2021). New properties of the time-scale fractional operators with application to dynamic equations. Math. Morav. 1(25): 123-136. https://doi.org/doi: 10.5937/MatMor2101123B
- [4] Bendouma B and Hammoudi A (2019). Nonlinear Functional Boundary Value Problems for Conformable Fractional Dynamic Equations on Time Scales. Mediterr. J. Math. 16(2). https://doi:10.1007/s00009-019-1302-5
- [5] Mozyrska D, Torres DFM and Wyrwas M (2019). *Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales*. Nonlinear Anal. Hybrid Syst. **32**: 168-176. https://doi:10.1016/j.nahs.2018.12.001
- [6] Ladrani FZ and Cherif AB (2020), Oscillation Tests for Conformable Fractional Differential Equations with Damping. Punjab Univ. J. Math. 2(52): 73-82.
- [7] Benkhettou N, Hammoudi A and Torres DFM (2016). Existence and uniqueness of solution for a fractional Riemann-Liouville initial value problem on time scales. J. King Saud Univ. Sci. 28(1): 87-92. https://doi:10.1016/j.jksus.2015.08.001
- [8] Sidi Ammi MR and Torres DFM (2018). Existence and uniqueness results for a fractional Riemann-Liouville nonlocal thermistor problem on arbitrary time scales. J. King. Saud. Univ. Sci. 3(30): 381-385. https://doi:10.1016/j.jksus.2017.03.004
- [9] Abdeljawad T and Torres DFM (2017). Symmetric duality for left and right Riemann–Liouville and Caputo fractional differences. Arab J. Math. Sci. 23(2). 157-172. https://doi://10.1016/j.ajmsc.2016.07.001
- [10] Gülse T, Yilmaz E and Kemaloğlu H (2019). Conformable fractional Sturm–Liouville equation and some existence results on time scales. Turkish J. Math. **42**(3): 1348-1360. https://doi:10.3906/mat-1704-120
- [11] Abdeljawad T, Jarad F, Atangana A and Mohammed PO (2020). On a new type of fractional difference operators on h-step isolated time scales: Weighted fractional difference operators. J. Frac. Calc. Nonlinear Sys. 1(1): 46-74. https://doi.org/10.48185/jfcns.v1i1.148
- [12] Abdeljawad T, Suwan I, Jarad F and Qarariyah A (2021). *More properties of fractional proportional differences*. J. Math. Anal. Model. **2**(1): 72-90. https://doi.org/10.48185/jmam.v2i1.193
- [13] Owolabi KM and Shikongo A (2019). Fractional operator method on a multi-mutation and intrinsic resistance model. Alexandria Eng. J. 59(4). https://doi.org/10.1016/j.aej.2019.12.033

- [14] Atangana A, Akgul A and Owolabi KM (2020). Analysis of fractal fractional differential equations. Alexandria Eng. J. 59(3): 1117-1134. https://doi.org/10.1016/j.aej.2020.01.005
- [15] He JH (2018). Fractal calculus and its geometrical explanation. Results in Physics, 10: 272-276. https://doi.org/10.1016/j.rinp.2018.06.011
- [16] Bajlekova EG (2001). Fractional evolution equations in Banach spaces. Eindhoven University of Technology, Eindhoven.
- [17] Cabada A and Vivero D (2006). Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral; application to the calculus of Δ- antiderivatives. Math. Comp. Model. 43: 194-207. https://doi.org/10.1016/j.mcm.2005.09.028
- [18] Granas A and Dugundji J (2003). *Fixed point theory*, Springer Monographs in Mathematics, Springer-Verlag, New York.
- [19] Hilger S (1988). Ein Makettenakalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universität Würzburg, (in German).
- [20] Bohner M and Peterson AC (2001). *Dynamic Equations on Time Scales, An Introduction with Applications*. Birkäuser Boston, Inc., Boston, MA.
- [21] Cherif AB, Hammoudi A and Ladrani FZ (2013). *Density problems in* $L^p_{\Delta}(\mathbb{T}, \mathbb{R})$ *space.* Electro. J. Math. Anal. Appl. 1: 178-187.
- [22] Cherif AB and Ladrani FZ (2021). Density problems in sobolev's spaces on time scales. kragujevac. J. Math. 45: 215-223. https://doi.org/10.46793/KgJMat2102.215C
- [23] Bendouma B, Cherif AB and Hammoud A (2018). *Systems of first-order nabla dynamic equations on time scales*, Malaya. J. Math. **4**(6): 757-765. https://doi:10.26637/MJM0604/0009