Numerical solution for multi-term fractional delay differential equations

Eman A. A. Ziada

Nile Higher Institute for Engineering and Technology, Mansoura, Egypt

Abstract

In this paper, a multi-term nonlinear delay differential equation (DDE) of arbitrary order is studied. Adomian decomposition method (ADM) is used to solve these types of equations. Then the existence and stability of a unique solution will be proved. Convergence analysis of ADM is discussed. Moreover, the maximum absolute truncated error of Adomian’s series solution is estimated. The stability of the solution is also discussed.

Keywords: Nonlinear delay differential equation, Arbitrary orders, Fixed point theorem, Convergence analysis, Stability, Adomian decomposition method.

1. Introduction

Differential equations of arbitrary orders and delay differential equations (DDEs) have many applications in engineering and science, including electrical networks, fluid flow, control theory, fractals theory, electromagnetic theory, viscoelasticity, potential theory, chemistry, biology, optical and neural network systems with delayed feedback [1]-[19]. In this paper, Adomian decomposition method (ADM) [20]-[26] is used to solve nonlinear fractional delay differential equations (FDDEs). This method has many advantages; it is efficiently works with different types of linear and nonlinear equations in deterministic or stochastic fields and gives an analytic solution for all these types of equations without linearization or discretization.

The paper is organized as follows: In section two ADM is applied to the problem under consideration. In section three uniqueness, convergence; error analysis and stability are discussed. Finally two numerical examples are presented by using MATHEMATICA package.

*Corresponding author: eng.emanziada@yahoo.com

© 2020 SABA. All Rights Reserved.
2. Formulation of the Problem

Let \(\alpha_k \in (n-1, n) \), \(k = 1, \ldots, m \). Consider the nonlinear FDDE,

\[
D^n x(t) = f(t, x(t - r_0), D^\alpha_1 x(t - r_1), \ldots, D^\alpha_m x(t - r_m)), \quad t > 0, \tag{2.1}
\]

\[
x^{(j)}(0) = x_{0j}, \quad j = 0, 1, \ldots, n - 1, \tag{2.2}
\]

\[
x(t) = x_0, \quad t \leq 0. \tag{2.3}
\]

Where \(D = \frac{d}{dt}, t \in I = [0, T], T \in \mathbb{R}^+ \), \(x(t) \in C(I) \) and \(D^\alpha \) is the Caputo derivative defined by,

\[
D^\alpha x(t) = I_{n-\alpha} D^n x(t), \quad n-1 < \alpha \leq n,
\]

\[
I^n x(t) = \frac{1}{\Gamma(n)} \int_0^t (t-\tau)^{n-1} x(\tau) \, d\tau.
\]

Let

\[
x(t) = \sum_{j=0}^{n-1} x_{0j} \frac{t^j}{j!} + I^n y(t). \tag{2.4}
\]

Now

\[
x(t) = \sum_{j=0}^{n-1} x_{0j} \frac{t^j}{j!} + \frac{1}{\Gamma(n)} \int_0^t (t-\tau)^{n-1} y(\tau) \, d\tau \Rightarrow
\]

\[
x(t-r) = \sum_{j=0}^{n-1} x_{0j} \frac{(t-r)^j}{j!} + \frac{1}{\Gamma(n)} \int_0^{t-r} (t-r-\tau)^{n-1} y(\tau) \, d\tau
\]

\[
= \sum_{j=0}^{n-1} x_{0j} \frac{(t-r)^j}{j!} + I^n y(t-r). \tag{2.4}
\]

Then from equation (2.4), we get

\[
D^\alpha_i x(t-r_i) = I_{n-\alpha_i} D^n x(t-r_i)
\]

\[
= I^{n-\alpha_i} y(t-r_i), \quad i = 1, 2, \ldots, m. \tag{2.5}
\]

Substituting the equations (2.4) and (2.5) into equation (2.1), we get

\[
y(t) = f \left(t, \sum_{j=0}^{n-1} x_{0j} \frac{(t-r_0)^j}{j!} + I^n y(t-r_0), I^{n-\alpha_1} y(t-r_1), \ldots, I^{n-\alpha_m} y(t-r_m) \right). \tag{2.6}
\]

Now, \(f \) satisfies Lipschitz condition, i.e.,

\[
|f(t, y_0, y_1, \ldots, y_m) - f(t, z_0, z_1, \ldots, z_m)| \leq L \sum_{i=0}^{m} |y_i - z_i|, \tag{2.7}
\]
where L is a Lipschitz constant, which implies that
\[
\begin{align*}
\left| f \left(t, \sum_{j=0}^{n-1} x_0^j (t-r_0)^j \right) + I^n y (t-r_0), \ldots, I^{n-\alpha_1} y (t-r_m) \right| \\
- f \left(t, \sum_{j=0}^{n-1} x_0^j (t-r_0)^j \right) + I^n z (t-r_0), \ldots, I^{n-\alpha_1} z (t-r_m) \right|
\end{align*}
\]
\[\leq L \sum_{i=0}^{m} \left| I^{n-\alpha_1} y (t-r_i) - I^{n-\alpha_1} z (t-r_i) \right|, \quad \alpha_0 = 0.
\]
The solution algorithm of equation (2.6) using ADM is,
\[
y_0 (t) = p (t), \quad (2.8)
\]
\[
y_j (t) = A_{j-1} (t), \quad j \geq 1. \quad (2.9)
\]
Where A_j are Adomian polynomials of the nonlinear term
\[
f \left(t, \sum_{j=0}^{n-1} x_0^j (t-r_0)^j \right) + I^n y (t-r_0), \ldots, I^{n-\alpha_1} y (t-r_m) \right)
\]
which take the form,
\[
A_j = \frac{d^j}{j! d\lambda^j} \left[f \left(t, \sum_{i=0}^{\infty} \lambda^i I^n y_i (t-r_0), \ldots, \sum_{i=0}^{\infty} \lambda^i I^{n-\alpha_1} y_i (t-r_m) \right) \right]_{\lambda=0}.
\]
Thus, the solution of equation (2.6) will be,
\[
y(t) = \sum_{i=0}^{\infty} y_i (t). \quad (2.10)
\]
Finally,
\[
x (t) = \sum_{j=0}^{n-1} x_0^j t^j + I^n y(t). \quad (2.11)
\]
Remark: Let $0 < \alpha_1 < \alpha_2 < \ldots < \alpha_m < n$. Then the nonlinear FDDE,
\[
D^n x (t) = f (t, x (t-r_0), D^{\alpha_1} x (t-r_1), \ldots, D^{\alpha_m} x (t-r_m)), \quad t > 0,
\]
\[
x^{(j)} (0) = \begin{cases} x_0, & j = 0, \\ 0, & j = 1, \ldots, n-1, \end{cases}
\]
\[
x(t) = x_0 \quad t \leq 0
\]
can be transformed to equation (2.6) and then applied the ADM.

3. Analysis of Convergence

3.1. Uniqueness result

Define $F : E \to E$, E is the Banach space, $(C (I), \|\cdot\|)$, is the space of all continuous functions on I with the norm $\|x\| = \max_{t \in I} e^{-Nt} |x(t)|, N > 0.$
Theorem 3.1. The problem (2.6) has one and only one solution \(y(t) \in C(I) \) if \(f \) satisfies the Lipschitz condition (2.7).

Proof. Define \(F : E \rightarrow E \) as,

\[
F_y(t) = f \left(t, \sum_{j=0}^{n-1} \binom{n}{j} x_j^0 \frac{(t-r_0)^j}{j!} + I^n y(t-r_0), \ldots, I^n y(t-r_m) \right).
\]

Let \(y(t), z(t) \in E \), then

\[
F_y(t) - F_z(t) = f \left(t, \sum_{j=0}^{n-1} \binom{n}{j} x_j^0 \frac{(t-r_0)^j}{j!} + I^n y(t-r_0), \ldots, I^n y(t-r_m) \right) - f \left(t, \sum_{j=0}^{n-1} \binom{n}{j} x_j^0 \frac{(t-r_0)^j}{j!} + I^n z(t-r_0), \ldots, I^n z(t-r_m) \right)
\]

which implies that

\[
|F_y(t) - F_z(t)| \leq L \sum_{i=0}^{m} |I^{n-\alpha_i} y(t-r_i) - I^{n-\alpha_i} z(t-r_i)|
\]

\[
\leq L \sum_{i=0}^{m} \frac{1}{\Gamma(n-\alpha_i)} \int_0^t (t-\tau)^{n-\alpha_i-1} |y(\tau-r_i) - z(\tau-r_i)| d\tau
\]

\[
\max_{t \in I} e^{-Nt} |F_y(t) - F_z(t)| \leq L \sum_{i=0}^{m} \frac{1}{\Gamma(n-\alpha_i)} \max_{t \in I} \int_0^t e^{-Ns} s^{n-\alpha_i-1} \|y(\tau-r_i) - z(\tau-r_i)| d\tau
\]

\[
\|F_y - F_z\| \leq L \|y - z\| \sum_{i=0}^{m} \frac{1}{\Gamma(n-\alpha_i)} \int_0^\infty e^{-Ns} s^{n-\alpha_i-1} ds
\]

\[
\leq L \sum_{i=0}^{m} \frac{1}{\Gamma(n-\alpha_i)} \|y - z\|.
\]

Now, we choose \(N \) large enough such that \(L \sum_{i=0}^{m} \frac{1}{\Gamma(n-\alpha_i)} < 1 \), we get

\[
\|F_y - F_z\| < \|y - z\|.
\]

Then \(F \) is a contraction and hence there exists one and only one solution \(y(t) \in C(I) \) to the problem (2.6). \(\square \)
3.2. Convergence Proof

Theorem 3.2. The series solution (2.10) of the problem (2.6) converges if $|y_1(t)| < c$, where c is a positive constant.

Proof. Define the sequence $\{S_p(t)\}$ such that, $S_p(t) = \sum_{i=0}^{p} y_i(t)$ is the sequence of partial sums from the series solution $\sum_{i=0}^{\infty} y_i(t)$. From equations (2.8) and (2.9) we have,

$$\sum_{i=0}^{\infty} y_i(t) = p(t) + \sum_{i=1}^{\infty} A_{i-1}(t).$$

Let $S_p(t)$ and $S_q(t)$ are arbitrary partial sums, $p > q$, then

$$S_p(t) = \sum_{i=0}^{p} y_i(t) = p(t) + \sum_{i=1}^{p} A_{i-1}(t).$$

And

$$S_q(t) = \sum_{i=0}^{q} y_i(t) = p(t) + \sum_{i=1}^{q} A_{i-1}(t).$$

Now, we will prove that $\{S_p(t)\}$ is a Cauchy sequence in E.

$$S_p(t) - S_q(t) = \sum_{i=1}^{p} A_{i-1}(t) - \sum_{i=1}^{q} A_{i-1}(t) = \sum_{i=q+1}^{p-1} A_i(t)$$

$$|S_p(t) - S_q(t)| \leq L \sum_{i=0}^{m} \frac{1}{\Gamma(n - \alpha_i)} \tau^n \alpha_i - 1 \int_{0}^{t} (t - \tau)^{n - \alpha_i - 1} |S_{p-1}(\tau - \tau_i) - S_{q-1}(\tau - \tau_i)| d\tau$$

$$e^{-N \tau} |S_p(t) - S_q(t)| \leq L \sum_{i=0}^{m} \frac{1}{\Gamma(n - \alpha_i)} \tau^n \alpha_i - 1 \int_{0}^{t} e^{-N(t-\tau)} (t-\tau)^{n - \alpha_i - 1}$$

$$\times e^{-N \tau} |S_{p-1}(\tau - \tau_i) - S_{q-1}(\tau - \tau_i)| d\tau$$

$$\|S_p - S_q\| \leq L \sum_{i=0}^{m} \frac{1}{N^{n-\alpha_i}} \|S_{p-1} - S_{q-1}\|$$

$$\leq \beta \|S_{p-1} - S_{q-1}\|.$$
From the triangle inequality we have,
\[\|S_p - S_q\| \leq \|S_{q+1} - S_q\| + \|S_{q+2} - S_{q+1}\| + \cdots + \|S_p - S_{p-1}\| \leq \left(\beta^q + \beta^{q+1} + \cdots + \beta^{p-1} \right) \|S_1 - S_0\| \leq \beta^q \frac{1 - \beta^{p-q}}{1 - \beta} \|y_1\| . \]

Since, \(0 < \beta = \sum_{i=0}^{m} \frac{1}{N^i} < 1 \), and \(p > q \) then, \((1 - \beta^{p-q}) \leq 1 \). Consequently,
\[\|S_p - S_q\| \leq \beta^q \frac{1 - \beta}{1 - \beta} \|y_1\| \leq \beta^q \frac{1}{1 - \beta} \max_{t \in I} e^{-Nt} |y_1(t)| \]

But, if \(|y_1(t)| < c \) and as \(q \to \infty \) then, \(\|S_p - S_q\| \to 0 \) and hence, \(\{S_p(t)\} \) is a Cauchy sequence in \(E \) so, the series \(\sum_{i=0}^{\infty} y_l(t) \) converges.

3.3. Analysis of Error

Theorem 3.3. The maximum absolute truncation error of the solution (2.11) to the problem (2.1)- (2.3) is estimated by

Proof.
\[\left\| x - \sum_{i=0}^{q} x_i \right\| \leq \left(\sum_{k=0}^{n-1} \frac{(-T)^k}{(k!) N^{n-k}} \right) \left(\frac{\beta^q}{1 - \beta} \|y_1\| \right) \quad \text{if } n \text{ is odd}, \]

and
\[\left\| x - \sum_{i=0}^{q} x_i \right\| \leq \left(\sum_{k=1}^{n-1} \frac{(-1)^{k+1} (T)^k}{(k!) N^{n-k}} \right) \left(\frac{\beta^q}{1 - \beta} \|y_1\| \right) \quad \text{if } n \text{ is even}. \]

From Theorem 2 we have,
\[\|S_p - S_q\| \leq \beta^q \frac{1}{1 - \beta} \max_{t \in I} e^{-Nt} |y_1(t)| . \]

But, \(S_p(t) = \sum_{l=0}^{n} y_l(t) \) as \(p \to \infty \) then, \(S_p(t) \to y(t) \) so,
\[\|y - S_q\| \leq \beta^q \frac{1}{1 - \beta} \|y_1\| . \]

So,
\[\left\| y - \sum_{i=0}^{q} y_i \right\| \leq \beta^q \frac{1}{1 - \beta} \|y_1\| . \] (3.1)

Form equation (2.11), we get
\[\sum_{l=0}^{\infty} x_l(t) = \sum_{j=0}^{\infty} x_j t_j^j + I^n \left(\sum_{i=0}^{\infty} y_i(t) \right) . \] (3.2)
Using equations (2.11) and (3.2), we obtain

\[x(t) - \sum_{i=0}^{q} x_i(t) = I^n y(t) - I^n \left(\sum_{i=0}^{q} y_i(t) \right) \]

\[= \int_{0}^{t} \cdots n - \text{fold} \cdots \int_{0}^{t} \left(y(\tau) - \sum_{i=0}^{q} y_i(\tau) \right) d\tau \cdots d\tau. \]

\[e^{-Nt} \left| x(t) - \sum_{i=0}^{q} x_i(t) \right| = \int_{0}^{t} \cdots n - \text{fold} \cdots \int_{0}^{t} e^{-N(t-\tau)} \left| x(\tau) - \sum_{i=0}^{q} y_i(\tau) \right| d\tau \cdots d\tau \]

From equation (3.1), we get

\[\left| x - \sum_{i=0}^{q} x_i \right| \leq \left| \sum_{j=0}^{n-1} T_j x_j \right| \left[\sum_{j=0}^{n-1} T_j x_j \right] + \left| \sum_{j=0}^{n-1} y_j \right| \left| \sum_{j=0}^{n-1} \sum_{k=0}^{T_j} \left(\frac{T_j^k}{k!} N^{n-k} \right) \right| \left| y - \tilde{y} \right| \]

if \(n \) is odd, (3.3)

and

\[\left| x - \sum_{i=0}^{q} x_i \right| \leq \left| \sum_{j=0}^{n-1} \left(-1 \right)^{k+1} \left(\frac{T_j^k}{k!} N^{n-k} \right) \right| \left| \sum_{j=0}^{n-1} y_j \right| \left| \sum_{j=0}^{n-1} \left(\frac{T_j^k}{k!} N^{n-k} \right) \right| \left| y - \tilde{y} \right| \]

if \(n \) is even. (3.4)

And this completes the proof. \(\square \)

3.4. Stability of the Solution

Theorem 3.4. The solution of the problem (2.1)- (2.3) is uniformly stable.

Proof. Let \(x(t) \) be a solution of the problem (2.1)- (2.3) and let \(\tilde{x}(t) \) be also a solution of this problem such that \(\tilde{x}^{(1)}(0) = \tilde{x}_0 \), then

\[|x(t) - \tilde{x}(t)| \leq \left| \sum_{j=0}^{n-1} T_j x_j \right| \left| \sum_{j=0}^{n-1} T_j x_j \right| + |1^n [y(t) - \tilde{y}(t)]|. \]

\[\|x - \tilde{x}\| \leq \sum_{j=0}^{n-1} \left| x_j - \tilde{x}_0 \right| \left| T_j^j \right| + \|y - \tilde{y}\| \int_{0}^{t} \cdots n - \text{fold} \cdots \int_{0}^{t} e^{-N(t-\tau)} d\tau \cdots d\tau. \]

From equations (3.3) and (3.4), we have

\[\|x - \tilde{x}\| \leq \sum_{j=0}^{n-1} \left| T_j^j \right| \left| x_j - \tilde{x}_0 \right| + \left(\sum_{k=0}^{n-1} \left(\frac{(-1)^k}{k!} N^{n-k} \right) \right) \|y - \tilde{y}\| \] if \(n \) is odd, (3.5)
Therefore from equations (3.8) and (3.9), if
\[\sum_{j=0}^{n-1} \frac{T_j^j}{j!} |x_0^j - \tilde{x}_0^j| \leq \left(\frac{n-1}{k!} \left(\frac{T}{N} \right)^k \right) ||y - \tilde{y}|| \text{ if } n \text{ is even.} \tag{3.6}\]

From equation (2.6), we get
\[|y(t) - \tilde{y}(t)| \leq \left| \sum_{j=0}^{n-1} \frac{x_0^j (t - r_0)^j}{j!} \right| + \left| \sum_{j=0}^{n-1} \frac{x_0^j (t - r_0)^j}{j!} \right| +
\]
\[= \sum_{j=0}^{n-1} \left| x_0^j - \tilde{x}_0^j \right| \frac{T_j^j}{j!} +
\]
\[L \sum_{i=0}^{m} \left| I_{n-\alpha_i} y(t - r_i) - I_{n-\alpha_i} \tilde{y}(t - r_i) \right|
\]
\[\leq \sum_{j=0}^{n-1} \left| x_0^j - \tilde{x}_0^j \right| \frac{T_j^j}{j!} +
\]
\[L \sum_{i=0}^{m} \frac{1}{(n-\alpha_i)} \int_0^t (t - \tau)^{n-\alpha_i-1} \left| y(\tau - r_i) - \tilde{y}(\tau - r_i) \right| d\tau
\]
\[\|y - \tilde{y}\| \leq \sum_{j=0}^{n-1} \frac{T_j^j}{j!} \left| x_0^j - \tilde{x}_0^j \right| + L \sum_{i=0}^{m} \frac{1}{N_{n-\alpha_i}} ||y - \tilde{y}||
\]
\[\|y - \tilde{y}\| \leq \left(1 - L \sum_{i=0}^{m} \frac{1}{N_{n-\alpha_i}} \right)^{-1} \left(\sum_{j=0}^{n-1} \frac{T_j^j}{j!} \left| x_0^j - \tilde{x}_0^j \right| \right). \tag{3.7}\]

Substituting the equation (3.7) into equation (3.5), we get
\[\|x - \tilde{x}\| \leq \left(1 + \left(\sum_{k=0}^{n-1} \frac{(-1)^k}{(k!) N^{n-k}} \right) \left(1 - L \sum_{i=0}^{m} \frac{1}{N_{n-\alpha_i}} \right) \right) \left(\sum_{j=0}^{n-1} \frac{T_j^j}{j!} \left| x_0^j - \tilde{x}_0^j \right| \right)
\]
if n is odd, \tag{3.8}

Substituting the equation (3.7) into equation (3.6), we get
\[\|x - \tilde{x}\| \leq \left(1 + \left(\sum_{k=0}^{n-1} \frac{(-1)^{k+1} T^k}{(k!) N^{n-k}} \right) \left(1 - L \sum_{i=0}^{m} \frac{1}{N_{n-\alpha_i}} \right) \right) \left(\sum_{j=0}^{n-1} \frac{T_j^j}{j!} \left| x_0^j - \tilde{x}_0^j \right| \right)
\]
if n is even. \tag{3.9}

Therefore from equations (3.8) and (3.9), if \[\sum_{j=0}^{n-1} \frac{T_j^j}{j!} |x_0^j - \tilde{x}_0^j| < \delta (\epsilon), \text{ then } ||x - \tilde{x}|| < \epsilon, \]
which completes the proof. \qed
4. Numerical Method and Results

Example 4.1. Consider the following nonlinear FDDE,
\[
\frac{dx(t)}{dt} = \frac{1}{2} (1 - t) + \frac{1}{5} x(t - 0.3) + \frac{1}{15} \left(D^{1/3} x(t - 0.05) \right)^3 + \frac{1}{20} \left(D^{1/4} x(t - 0.4) \right)^4, \quad t > 0,
\]
(4.1)

Using equations (2.4)-(2.6), we get
\[
y(t) = \left(0.52 - \frac{t}{2} \right) + \frac{1}{5} \left[I y(t - 0.3) \right] + \frac{1}{15} \left[I^{2/3} y(t - 0.05) \right]^3 + \frac{1}{20} \left[I^{3/4} y(t - 0.4) \right]^4. \quad (4.2)
\]

Applying ADM to equation (4.2), we have
\[
\begin{align*}
y_0(t) &= \left(0.52 - \frac{t}{2} \right), \quad (4.3) \\
y_i(t) &= \frac{1}{5} \left[I y_{i-1}(t - 0.3) \right] + \frac{1}{15} A_{i-1}(t) + \frac{1}{20} B_{i-1}(t), \quad i \geq 1. \quad (4.4)
\end{align*}
\]

Where \(A_i \) and \(B_i \) are Adomian polynomials of the nonlinear terms \(I^{2/3} y(t - 0.05) \) and \(I^{3/4} y(t - 0.4) \) respectively. From equations (4.3) and (4.4), the solution of the problem (4.2) is,
\[
y(t) = \sum_{i=0}^{m} y_i(t). \quad (4.5)
\]

Finally
\[
x(t) = 0.1 + 1[y(t)] = 0.1 + 0.52t - 0.18697t^2 - 0.00732539t^3 - 0.00130407t^4 - 0.000206309t^5 + 0.00117699t^6 - 0.000528417t^7 + \cdots.
\]

The maximum absolute truncated error at different values of \(m \) (when \(t = 1, N = 10 \)) are given in Table 1. Figure 1 shows ADM solution (when \(m = 5 \)).

<table>
<thead>
<tr>
<th>m</th>
<th>Max. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(3.07849 \times 10^{-8})</td>
</tr>
<tr>
<td>10</td>
<td>(9.93029 \times 10^{-14})</td>
</tr>
<tr>
<td>15</td>
<td>(3.20321 \times 10^{-19})</td>
</tr>
<tr>
<td>20</td>
<td>(1.03326 \times 10^{-24})</td>
</tr>
</tbody>
</table>

Example 4.2. Consider the following nonlinear FDDE,
\[
D^2x(t) = 2 - \frac{2t}{\pi} \left(\frac{2t}{3} - 0.1 \right)^2 - \frac{64t^2}{5\pi^2} + \frac{1}{8} \left(D^{1/2} x(t - 0.1) \right)^2 + \frac{1}{20} \left(D^{3/2} x(t - 0.2) \right)^4, \quad t > 0,
\]
(4.6)
The exact solution of this problem is t^2.

By using equations (2.4)-(2.6), we get

$$y(t) = 2 - \frac{2t}{\pi} \left(\frac{2t}{3} - 0.1 \right)^2 - \frac{64t^2}{5\pi^2} + \frac{1}{8} \left[I^{3/2} y(t - 0.1) \right]^2 + \frac{1}{20} \left[I^{1/2} y(t - 0.2) \right]^4, \quad (4.7)$$

Where $x'(0) = 0$.

Applying ADM to equation (4.7), we have

$$y_0(t) = 2 - \frac{2t}{\pi} \left(\frac{2t}{3} - 0.1 \right)^2 - \frac{64t^2}{5\pi^2}, \quad (4.8)$$

$$y_i(t) = \frac{1}{8} A_{i-1}(t) + \frac{1}{20} B_{i-1}(t), \quad i \geq 1. \quad (4.9)$$

Where A_i and B_i are Adomian polynomials of the nonlinear terms $[I^{3/2} y(t - 0.1)]^2$ and $[I^{1/2} y(t - 0.2)]^4$. From equations (4.8) and (4.9), the solution of the problem (4.7) is

$$y(t) = \sum_{i=0}^{q} y_i(t). \quad (4.10)$$

Finally

$$x(t) = \Gamma^2 [y(t)].$$

The absolute error of ADM series solution (when $q = 2$) are shown in Table 2 and the maximum absolute truncated error (using Theorem 3) at different values of q (when $t = 1, N = 25$) are given in Table 3. Figure 2 shows ADM and exact solutions (when $q = 2$).
5. Conclusion

In this paper, an interesting method (ADM) has been used to solve a nonlinear multi-term fractional delay differential equation. This method has given an analytical solution. Moreover, when we have compared the ADM solution with the exact solution, we have seen that it gives a good approximate solution and it is enclosed with the results obtained from using Theorem 3 (see Tables 1,3).

References

