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Abstract

In this article, an attempt is made to achieve the series solution of the time fractional generalized
Korteweg-de Vries equation which leads to a conditionally convergent series solution. We have also resorted
to another technique involving conversion of the given fractional partial differential equations to ordinary dif-
ferential equations by using fractional complex transform. This technique is discussed separately for modified
Riemann-Liouville and conformable derivatives. Convergence analysis and graphical view of the obtained
solution are demonstrated in this work.
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1. Introduction

Non-linear partial differential equations (PDEs) have been used extensively to model
many real world problems. The investigation of fractional partial differential equations
(FPDEs) and fractional ordinary differential equations (FODEs) have pulled in much con-
sideration because of the absolute portrayal of non-linear phenomena in viscosity [1],
electromagnetic [2], image and signal processing [3] and other fields of applied sciences.
In real life a physical phenomena depends both on instant time as well as on the past time
history [4, 5], which can be effectively modeled by utilizing fractional operators. A clas-
sic example of generalization of partial differential equations (PDEs) to fractional partial
differential equations (FPDE) is the class of Korteweg-de Vries (KdV) equations.

KdV equations are PDEs which help to formulate a model for the evolution and interaction
of waves. KdV came into existence because of the experiments conducted by John Scott

*Corresponding author: rajeevkumarbudhiraja@gmail.com


jfcns.sabapub.com
doi:10.48185/jfcns.v2i2.315
mailto:Email Address

R. Kumar, S. Kumar, S. Kaur, S. Jain / Time Fractional GKdV Equations ... 63

Russell (1834) and was developed further because of research done by Lord Rayleigh,
Joseph Boussinesq (1870) and Korteweg and De Vries (1895). It is utilized in continuum
mechanics, plasma mechanics, etc.

Numerous methods have been implemented to solve fractional KdV equations. In Ref. [6],
the author has utilized He’s Variational iteration method (VIM) to acquire approximate
solitary wave solutions of time fractional KdV equation. Some other techniques are (G’/G)
expansion method [7], Generalized Kudryashov method [8], Adomian decomposition
method (ADM) [9, 10] and ADM-Pade technique [11].

The present work aims at finding the exact solution of the following time fractional gen-
eralized Korteweg-de Vries equation (TFg KdVe):

o*u -
at—“:uxxx+Au Uy, 0O<a<<1l,p>0. (1.1)
For this we have explored the method discussed in [12, 13, 14]. Its algorithm consti-
tutes conversion of FPDE to FODE in Erdeéyli-Kober sense by using Lie symmetry and then
derive its series solution to find the explicit solution of the governing equation. In 2012,
Sahadevan and Bakkyaraj [15], had derived the Lie point symmetries of TFg KdVe(1.1)
and hence used the obtained symmetries to transform it into non-linear FODE as follows:

1—2% o,

(P, 7

o4

9)(z) = 9" (2) + AgP(2)g’(2). (1.2)

They concluded that equation (1.1) cannot be solved in general except for « = p = 1.
But we have made an attempt to extend their work by finding series solution of the given
FODE and hence of the governing equation (1.1).

The paper is organized as follows:

In section 2 presents preliminaries, Section 3, describe the acquired solution of FODE
(1.2) under some conditions. In section 4 and section 5, fractional complex transforma-
tion(FCT) has been deployed to acquire exact solution of TFg KdVe (1.1) considering time
fractional derivative in modified Riemann-Liouville(RL) and conformable derivative sense,
respectively. Moreover, convergence analysis and graphical view of developed solutions
have also been included in section 4.

2. Preliminaries

¢ RL fractional derivative [16]:

1 am px o )
D&h(x) == W?Ib(x_y)m x 1h(9)d9 ym—lT<a<m, 2.1)
4 h(x) ;o0=m,

where x and b are real numbers; x > b, « € Rt andn € IN.

* Erdeyli-Kober fractional differential operator [15]

h—1
(37) = [T (<1 1o2) (6525) (125 05 0.0, 2
j=0
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where h — [l +1, a¢ N,
x, x € N,
and
1 [ (w— 1)"‘*1w*“+°‘)g(zw%)dw x>0
(Kg*g)(z) =4 T(e) *! ’ ’ (2.3)

g(z), a=0,

is Erdeyli-Kober fractional integral operator.

Conformable Derivative [17]
Given a function g : (0,00) — R, then the conformable derivative of g of order « is
defined by:

To(g)(t) = Tim SEHEL) —g(t

m, 3 ,t>0, xe(0,1). 2.4)

If the conformable fractional derivative of g of order « exists, then we say g is «-
differentiable.

Now, we shall find the explicit power series solution of FODE (1.2) corresponding to TFg
KdV equation (1.1), deduced by the authors [15] and obtained the exact solution of the
principal time fractional equation.

3. Power Series Solution using Erdeéyli-Kober Operator

In this section, we will present a series solution of non-linear ODE of fractional order
given by equation (1.2).
Suppose the power series solution for equation (1.2) is of the form:

and

9(z) =) nz™ (3.1)
n=0
Then, the derivatives of the solution of equation (1.2) are:
9'(z) =) (n+1)pnz",
no (3.2)
g"(z2) =) (m+1D)Mn+2)dpni2z",
n=0
" = n
g"(z) =) (M+1Dn+2)(n+3)dpniaz"™
n=0

In view of Erdeyli-Kober (EK) fractional differential operator definition, equation(2.2) and
after substituting the values of g(z), 9" (z), g"’(z) from (3.1) and (3.2), the equation (1.2)
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reads as follows:

0 r( 2 noc) 0

Z r‘(l 20(3p 32 )d)“z Z(n+1)(n+2)(n+3)(pn+3zn

00 P ~
+A<Z d)nz“> Y (n+ 1)z (3.3)

n=0 n=0

n=0

The equation (3.3) can be reduced to the following cases for various values of p :

Case 1: For p = 1 equation (3.3) reduces to the following form:

>

‘“‘9 ""g

Z M+1)M+2)(n+3)dnizz"™

+A (Z cl)nz“> > (n+1)dnz" (3.4

n=0 n=0

‘*’\sz w\sz

On comparing constant terms, coefficient of z, z?> and z™ on both sides of equation (3.4),
one can have the following values:

b= (L0 g Agus (3.5)
37123\ pr s Yo Aoy .
1 M1l—o) )
7231 (ru ~2a) ‘A(z“’od’ﬁd’l))' (3.6)
and
_ 1 -2 - o)
¢n+3_(ﬂ+1)(n+2)(n+3){r(1 %f%)q)“
—A)Y (n+1 —k)¢k¢n+1—k},Vn >0, (3.7)
k=0
respectively.

Therefore, the power series solution of FODE (1.2) for p = 1 is given by:

1 (11— 2 —nx)
9(z) = do+ drz+ oz” +Z n+1)(n+2)(n—|—3){ “5a_na)¥n

—AY (41 —k)«bwnﬂk}z“”. (3.8)
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Hence, by applying the transformation [15], z = xt3 ,u(x,t) = t 3 g(z), the explicit
power series solution of TFG KdV equation (1.1) is given as below

u(x, t) =

Got 3+ hrxt* + gt 3+ Y

1 r1—2x—nx)
3 3 d)
— (n+1)(n+2)(n+3) | 71— 5 —ne) ™"
n
~AY (nt1- k)cbkcbnﬂ_k}xwt“[; ©. 69
k=0
Case 2: For p = 2 equation (3.3) reads as

i (F(l

—
’,:
W‘g W\Q

_?))) bz =) M+1)M+2)(n+3)Ppniaz"+
T3

n=0
2 o0
(Z Pz ) > (n+1)pnz™. (3.10)
n=0

On comparing constant terms, coefficient of z, z2 and z™ on both sides of equation (3.10)
and after some simplification we can have the power series solution of FODE (1.2) for
p = 2 as follows:

9(z) =

1 M1— % — ne)
b0+ drz+ 4oz’ +Z (n+1 (n+2)(n+3){r(1 T“_%)cb“
K
—A Z Z(TH— 1— k)¢i¢k—i¢n+lk}zn+3- (3.11)
k=0 i=0

Hence, for p = 2, by applying the Lie symmetry transformation [15], z = xt3 , u(x, t)
t73 g(z), the explicit power series solution of TFG KdV equation is

o
2x
ulx,t) = ot = +drxt 3 + Pt + Y

1 ra-5-%)
-+ 1D)(n+2)(n+3) | F(1—42 —ne) ™"
n k
—A Z Z(n +1-— k)d)id)kt¢n+1—k}xn+3ta(;+4) (3.12)
k=01i=0

Now, we shall find the series solution of equation(3.3) in general i.e. for any value p > 0
First of all let us simplify z™ term of (3 5 dnz™)P > 2 o+ 1dpni1

General term of () o o dnz™)P X 0 o dni1(n+1)

(3.13)
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Upon comparing constant terms and coefficient of z™ of equation (3.3) on both sides, one
gets

1 r(1—2x)
¢3=1‘2‘3 M _ﬁ_ )490—/\4)04)1 (3.14)

and

_ 1 2a o
¢n+3_(ﬂ+1)(n+2)(n+3){r(l 2% no O()d)n A Z Z Z

k(P—3) k(-2 k-1

Z MA+1 =KDy drr1_ym P21 o

kP2 =0 k(P-1D=0 kP)=0

e @ Pre ke Py Gnpr_xm },Vﬂ >0, (3.15)

respectively.
By substituting the values of ¢3 and ¢, 3 from equations (3.14) and (3.15) in (3.1), one
can have:

1 r1 -3y — %)
P
9(z) = bo+ 1z + bz’ +Z n+1) (n+2)(n+3){r(1—§g—?—oc)¢”
n k@ k(2 k(P=3) k(P—2) (p—1)
-A Y Y Z Z Z (n+1=k") b Prirn_m
kD=0 k@ =0 kB3 =0 =0 k(-1
¢k(p 2) _y(p-1) - d)k (4) ¢k(2)7k(3) Cbk(l)—k(z) ¢n+1k(1l}zn+3' (3.16)

Hence, by applying the transformation [15], z = xt3 ,u(x,t) = t%xg(z), the explicit
power series solution of TFg KdV equation (1.1) is:

—a(p+2) —2x(p+1)
u(x, t) = pot 3 w4 dixt™ w F Xt ¥+
200 N k@ k(@)

00 1 I( _%_T) n
Z (n+1)(n+2)(n+3){r(l—%‘—““—a)q’“_A Z Z

n=0 3p 3 kW=0 k@=0 kB)=0
k(P—3) k-2 k-1
Z Z n+1-— )‘bk P11k Prip-2_yp-1)
k(P—2)=0 k(P-D=0 k(P)=0
—a((n+3)p+2)
n43, —PTE
e k@ P e G e Gk }X t . (3.17)
Clearly, the above series solution diverges whenever (1 — %—]‘;‘ — %) equals zero or negative

integers as gamma function is undefined for these values. Hence, the obtained solution
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(3.17) is conditionally convergent.
In next section, an alternative method is provided to find the explicit power series solution
of the equation TFg KdVe (1.1).

4. Traveling wave solution in sense of modified Riemann-Liouville derivative

To find the traveling wave solution of equation (4.2) in modified RL [18] sense, we
apply the transformation used in [19, 20]

AtX
u(x,t) =u(g), &=kx— m/ 4.1)
where k, « are constants.
Thus, (1.1) reduces to
MU (&) +K3u” (&) + AkuP (£)u/(&) = 0. (4.2)

Integrating both sides of (4.2) with respect to &, we get

+1
(&) 4+ K3u (&) + Ak% =g, (4.3)

p+1

where c is an integration constant.
Suppose, the power series solution of (4.3) is of the following form:

=) vn&™ (4.4)
o
Accordingly,
W(E) =) (n+1ynn&", (4.5)
n=0
=) (4D M +2ynE™ (4.6)
n=0
Substituting the values of w(&),u'(§),u” (&) from equations (4.4),(4.5),(4.6) respectively
the equation (4.3) can be rewritten as:
p+1
AZvna“ +1 Z (M D+ 2ynst™ + s <Z m&“) —c. 47
n=0 n=0

This is the general equation with p > 0. The following cases can be deduced from equation
4.7).
Case 1: For p = 1, equation (4.7) reads as:

AD YnE K Y (n+1)(n+2)yn28™ + % <Z > vwnka“> =c. (48

n=0 n=0 n=0k=0
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On comparing constant terms, coefficients of & and &™ on both sides of equation (4.8),
one can obtain:

—1 Ak
Y2:W<2Y%+7\YO—C>, (4.9)
-1
Y3 = 23)@ (Ak(voy1) +Av1), (4.10)
and
—1 Ak
Yn+2 = 3 ( D NYnokt Mn) n > 1, (4.11)
m+1)(n+2)k 2 =
respectively.

Thus, the power series solution of (4.3) for p = 1 can be written as:
1 [Ak , )
= _— _— A —
u(&) =vo+m7é o ( 5> Yo+ Ao c> &

> 1 Ak —
- (2 Z YkYn—k + Mn> £ (4.12)
k=0

Mm+1)(n+2)k3

n=1

Hence, in view of (4.1) the exact power series solution of TFg KdV equation (1.1), for
p = 1is defined as:

- AL 1 Ak . At¥ 2
ubot) =votm <k"_ F(1+oc)> N (12)k3 ( 2 Yoo ) (kX_F(Hoc)>

& 1 Ak At \™2
-2 (n+1)(n~|—2)k3< ZVW“ “”Y“) (k"_r(uoc)) o 13)

n=1

where v, V1, k, A # 0 are arbitrary constants and one can obtain the remaining coefficients
Yn(n > 1) from equations (4.9) and (4.11).

Case 2: For p = 2, in equation (4.7), one can have:

NS Y Y (n Dk 2yt A (z 53 Ve ya )

n=0 n=0 n=0%k=0i=0
(4.14)

On comparing constant terms, coefficients of & and &™ on both sides of equation (4.14)
and after some simplification as done in previous case, one can have the exact power series
solution of TFg KdVE (4.3) for p = 2 as follows:

1
w(&) =vo+v1&E— mkg) </§<Y8 +Ayo — C) £

- Ak
Z (m+1)( n~|—2)k (3 ZZYﬂ/k iYn— k+7\Yn> g2 (4.15)
n=1

k=0 1=0
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Therefore, the exact power series solution of TFG KdV equation (1.1) for p =2 is:

At 1 Ak Atx 2
t) = kx — — K[ ==vg +Ayo— kx — ————
ulxt) YOJ”“( x F(1+cx)> (1.2) < 3 Yot AY0 C) ( x F(1+oc)>

> Ak @ & Atx \ M2
— Yk—iYn— kx — — 1
3 e (3 Lo e i) (e i) @9

k=01i=0

where vg,v1,k, A # 0 are arbitrary constants.
Now, we shall find series solution of equation (4.7) in general i.e. for any value p > 0.
Hence, reduced equation is:

A Va1 Y (D)0t 2y +pA+k1{ Yy

n=0 n=0
x(r—2) -1)

Z Z Yi@ Y- ﬂ/k(sz_k(p1>---Ykm_k(swkm_k(zn/n_km} =c. (4.17)
=0 k(

On comparing constant terms and coefficients of &™ on both sides of equation (4.17), we
get

—1 Ak
= P4 Nyo—c, 4.18
V2T T D+ 2)K3 <p+1V° A0 C) (4.18)
and
M @ KP-2 D)
~1 Ak & %
Yara= { S Y Y. -
(n+1)(n+2)k p+1k(1):0k(21:0k(3):0 kP =0 kPI=0
Y11k Y2 -1V 1B Vi) k@ Yn k@ —i—?\yn},Vn >1, (4.19)
respectively.

Therefore, the general solution of (4.3) is:

1 Ak
= — P4 Ayo—c ) &?
u(&) =vo+m7é CERICESIE <p+1Y0 +Avo C) 13
(1) (2) (p—2) (p—1)
i 1 { Ak i k k k'P k'P y
— 3 k(p)
n=1 (n + 1)(T1 - 2)k p +1 kKD=0k@2=0kB) =0 kP-1D=0 kP)=

=0
Y1 k) V-2 k-1 Y@ 13 V0 k@ Vn_n +A }ULH (4.20)
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So, the exact power series solution of TFg KdVe (1.1) for any value p > 0 is:

u(x,t) =vyo+ kx — AT

- L A p ge—e) (e M)
(n+1)(nt2)k3 \pr1ro 7AYo F(1+oc)

0 KD k@ K (p-2)

1 n
zmm{ px ST Y

n=1 =0k@=0kB® =0 k(P-D=0 kP)=0

n+2
Y1 k@ Yrp-2 _kp—1 Y@ _1B) Y0 _ @ Yn_k) +7\Yn} kx — 1+oc)> ,
4.21)

where g, k,A # 0 are arbitrary constants and the remaining coefficients y,(n > 1) are
obtained from equations (4.18) and (4.19).

Let us discuss the convergence analysis of series solution of equation (1.1).

4.1. Convergence Analysis

In this sub-section the convergence of power series solution of equation (1.1) has been
analyzed by using the concepts of Implicit Function theorem [21] and majorant series.
For this consider equation (4.19)

—1 n
Wna2l = m+1)mn+2)k {P+1 Z Z Z - Yk

Yip=1 k) Yip-2) k(-1 Y k@ Yn_x0 T AYn o, VN > 1. (4.22)

Then, one can obtain the following inequality:

n k(P—2) -1

Ak

Wntol < ‘H E Z Z Z |'Yk(p)
p KD=0k@=0kB® =0 kP-D=0klr)=0

h’k(pfl HVkp 2 _ ko1l h’k )||Yn_k(1)|}
+Allynl,¥n >1, (4.23)

Wik Vip-2 o1 |y — 2)||Yn_k(1)|}+Yn|:|/ (4.24)
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where M = max{ Ak

LA } Consider another power series,

Pl
o
C=C(e)=) cnlh, (4.25)
n=0
where ¢; = |yi| fori =0,1 and
kM k@ kP-2) -1

wheren =0,1,2...
Therefore, one can deduce that:

lyil <cy, 1=0,1,2..

It can be easily interpreted that the series C = C(&) = ) _,cn&™ is a majorant series of
4.4).

The next task is to prove that the series C = C(¢) has a positive radius of convergence.
For this one may rewrite the majorant series in the following form:

Cl&) =cotci&+ Z:f:o Cn+2€“+2,

(9] n
=co+c1&+ Z M[{ Z Z Cr () Crlp—1) k()

n=0 KD=0k@=0kB® =0 kP-D=0kP)=0

—co+c1&+MCPTDE2 L MCE2 (4.26)

Now, take into consideration the following implicit functional equation with ¢ as an inde-
pendent variable:

F(§,C)=C—co—c1&—M |CPHDg2 4 Ce?|. (4.27)

From the above equation, we observe that F is analytical in the neighborhood of (0, ¢g)
and F(0,co) =0; F(0,c0) =1#0.

Then by Implicit Function theorem [21], it can be inferred that C = C(¢) is analytic in
the neighborhood of the point (0, ¢p) with positive radius of convergence.

Hence, the power series (4.4) is convergent in neighborhood of the point (0, ¢p).
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4.2. Graphical Report

The figures of explicit solutions of TFg KdV equation (1.1), obtained using FCT and
power series method have been presented.

-1.0 -0.5 0.5 0

Figure 1: Perspective and 2D view of power series solution of (4.13) with the parameter values yo = 0,v, =
2 a=8,k=1,A=3A=7
37 x . 7 7 y 4 -

Figure 2: Perspective and 2D view of explicit series solution of (4.16) with the parameter values yog =0,y; =
2 oa=285k=1,A=3A=7F
3 7 (X M 7 7 7 4 .
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5. Traveling Wave Solution in Sense of Conformable Derivative

This section aims at finding the solution of TFg KdVe (1.1), where time fractional
derivative of order « is considered as conformable derivative (2.4). The reduced ODE is
solved by using (G’/G) expansion method [22, 23]. In light of the following transforma-
tion:

kt*
u:f(a)/ E,:X‘i‘?, (5-1)
the equation (1.1) reduces into an ordinary differential equation of the following form:
(&) = kf (&) + AP (E)F(E) = 0. (5.2)
On integrating and taking integration constant equal to zero, (5.2) reduces to:
" (f(&))P+!
f (&) —kf(§) +A——"—— = (5.3)
(£) (&) + AT s
Consider the following three cases for equation (5.3)
Case 1: whenp =1
Then, (5.3) gets converted to:
" f(£)?
f (&) —kf(&) +A(ZE’) =0. (5.4)

By homogeneous balance method, one can obtain degree n = 2. Hence, by utilizing (%)
method, suppose solution is of the following form:

! ! 2
(&) = wg+wq (GG> +wp (GG> . (5.5)

After substituting (5.5) in (5.4), a set of equations in terms of wy, w1, w; are obtained as:
2 1.5
20wsA + 10wowy + EAWZ =0,
8w§7\ + Awiw, + 16w%u + ZW% + 16wrAw; =0,
1
Awow, + 12wiAu + EAw% + 12wWowi p + 3WIA — kws + 6WiA %W, = 0,
w%%z + ZW%LL + Awg — kwy + 8wiAwo 4 4w§p2 =0,

1
w%?\u + 2w, uzwl + EAW% —kwo =0,

12w3 = 0. (5.6)
. . _ _ —36(Awg—K) _ _ _ —A :
On solving, it gives wy = 0,w; = —ALan W0 = Wo, i = i, A = =£. Depending on

A2 — 4y there are two solutions.
If A2 — 4p = 0, it gives hyperbolic traveling wave solution of equation (5.4) as

W t) — wp — S6AW—K) VA —du (L Cosh Y2y | [ sinnY by
7 - 0 — 3 AL
As+4+72u1 2 (Llsinh@(i + chosh@E) 2

(5.7)
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kt“
where £ =x + —
o

If A2 —4p < 0, it gives trigonometric traveling wave solution of equation (5.4) as
36(Awg —K) y/4u—2A2 | (L1Cos VARZA E [,Sin VA E A

u(x,t) =wo— =1,

2
Af+72u 2 L15mV ML, CosV ¥i o 2

X
where & = x + %
Case 2: whenp =2
Then, (5.3) reduces to:

3
'(8) —ki(e) + AL)

=0. (5.9

By homogeneous balance method, one can obtain degree n = 1. Hence, by using (%)
method, suppose solution is of the following form:

f(&) = wo +wq (GG> . (5.10)

Putting (5.10) in equation (5.9) gives a set of equations in terms of wy, w1, on simplifying

it,w1:—6\/+T,wo 3m,u I+ X
If A2 —4p >0
D S (LiCosh Y2 g 4 Lrsinh YA e) A 5.11)
VOA VA | (sinn YAy 4, cosh YA ) 2
Kt
where&—x#—T
IFA2 —4p <0
L1 Cos VA p _ [,8in VA
wot) =3 g 1 |lCosTE~aSin _A (5.12)

2
—6A V—6A (Ly Sln”zhL AE,+L Cos VA=A 2

2

kte
where & = x + v
Case 3: For any value of p > 0
Then, (5.3) reduces to:
f —kf+BfPH) =, (5.13)

By homogeneous balance method, one can obtain degree n = %.

_A
(p+1)°

!/

Hence, by using (%) method, suppose solution is of the following form:

f(&) =q (GG> . (5.14)

where B =
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Putting equation (5.14) in (5.13) gives a set of equation in polynomials (%) of which is

1
used to find out constant q. The obtained value of q = (7123}2”;4) "A=0p= ksz. The
solution of equation (5.14) is given as according to the conditions on .

If = 0, then

f(&) = <—2'P—4)é \ﬂu)(CwOS(\ﬂp)E) _CZCOS(ﬂu)E)) B 515)
Bp? clsin(\ﬂp.)g) + CZCOS(\/(u)E) . .

If u <0, then

0= (3 _4>; oot e VO (5.16)
N Bp? czeV(WE ¢ eV (WE ' '

6. Conclusion

Sahadevan and Bakkyaraj [15] have reduced TFg KdV equation (1.1) to FODE (1.2),
by the concept of Lie symmetry. They claimed that the reduced form cannot be solved in
general. But any equation without solution has no significance. Motivated by this fact, in
this study not only conditionally convergent series solution has been provided, but also we
have proposed one of the wave solution in sense of modified Riemann-Liouville derivative.
Graphs and convergence analysis of the procured series solution have been put forth.
Further, (G'/G) expansion method has been deployed to solve ODE (5.3) corresponding
to TFg KdVe (1.1) in conformable derivative sense.
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