e % 9 » « Journal of Fractional Calculus and Nonlinear Systems ] Frac Calc & Nonlinear Sys

N, y y
| jfcns.sabapub.com (2021)2(1) : 76-81

b ISSN : 2709-9547 doi:10.48185/jfcns.v2i1.297

SABA Publishing

On the iterative methods for solving fractional initial value
problems: new perspective

Q. M. AL-MDALLALY*®, M. A. HAJJI® @, THABET ABDELJAWADP

4Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al
Ain, Abu Dhabi, UAE.

b Department of Mathematics and Physical Sciences, Prince Sultan University, P. O. Box
66833, 11586 Riyadh, Saudi Arabia.

e Received: 25.06.2021 e Accepted: 28.06.2021 e Published Online: 29.06.2021

Abstract

In this short communication, we introduce a new perspective for a numerical solution of fractional
initial value problems (FIVPs). Basically, we split the considered FIVP into FIVPs on subdomains which
can be solved iteratively to obtain the approximate solution for the whole domain.
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1. Introduction

In recent years, huge interests from scientists in modelling problems in the fields
of fluid mechanics, electromagnetic, acoustics, chemistry, biology, physics and mate-
rial sciences using fractional differential equations (FDEs); see, by way of example not
exhaustive enumeration, [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, unlike the integer differ-
ential equations (DEs), the determination of the exact solutions of FDEs is so compli-
cated. Therefore, here is a race between researchers to discover accurate, simple and
efficient numerical schemes to approximate the exact solutions. For instance, Kazem et
al. [10] applied fractional-order Legendre Spectral Galerkin method, Bhrawy and Zaky
[11] implemented the shifted fractional-order Jacobi orthogonal functions, and Rehman
and Khan [12] implemented the Legendre wavelet method. It should be noted that
the fractional-Legendre functions have been implemented in the so-called fractional-
Legendre-Galerkin spectral method by few researchers in order to solve several types
of fractional ordinary differential equations, see for example Kazem et al. [10], Klimek
and Agrawal [13], Bhrawy and Alghamdi [14], Yiming et al. [15], Bhrawy et al. [16],

*Corresponding author: q.almdallal@uaeu.ac.ae


jfcns.sabapub.com
doi:10.48185/jfcns.v2i1.297
https://orcid.org/0000-0002-2853-9337
https://orcid.org/0000-0002-1317-4750
https://orcid.org/0000-0002-8889-3768
mailto:Email Address

Q.M. Al-Mdallal, M. A. Hajji, T. Abdeljawad / On the iterative methods for.... 77

Adams-Basforth method [17, 18] and Monotone iterative techniques [25, 24]. It is worth
mentioning herein, that all the above numerical schemes are implemented on the whole
domain which creates accumulative error that may significantly affects the accuracy and
simplicity of numerical schemes. Consequently, our target is to handle this problem by
proposing a new iterative technique that allow us to solve the FIDEs on subdomains.
The explanation of this method will applied on the following fractional initial value
problems of the form:

D&y(t) =f(t,y(t)) te(aTl, 0<a<l, (1.1)

subject to
y(a) = hg, (1.2)

where hy € Rand y € Li(a, T). The notation DY denotes the fractional derivative. With-
out loss of generality, we assume DY be the left-sided fractional derivative of Caputo
sense.

2. Preliminary Results

In this section, we present some basic definitions and properties of fractional calculus
theory.

Definition 2.1. The left-sided Riemann-Liouville fractional integral operator of order «
is defined by

xXy(t) = 1 tt o—1 d R 2.1
Jay()—wja( _ 0% ly(0)dr, weR, 2.1)

where, t € [a, T], y belongs to the Lebesgue space Li[a, T] and T is the Euler gamma
function defined by

M) :J s* le~3ds.
0

Lemma 2.2. ([19, 20, 21]) Let o, 3 >0, t € [a,T], vy > —1and y € Ly[a, T]. Then
(i) Joy(t) =y(t),
(ii) J&Ry(t) = Ja Py (t) = JETZ wb).

Definition 2.3. For x € R, m = [«] and t € [a, T], the left-sided Caputo fractional
derivatives operator is defined as:

t
Day(t) =Jg Y™ () = r—— (ml_ = J (t—om™ yM(1)dr, (22)

provided the integral exists. This operator was introduced by the Italian mathematician
Caputo in 1967, see [22].

Lemma 2.4. Forx € R, m = [«], t € [a, Tl and y € Ly[a, T, we have
1. DY JSy(t) = y(b).
m—1

k
2. 15 DS =y = Y y®(a) .
k=0 )
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3. Main results

In this section, for the sake of showing the motivation of our method, we solve
the fractional differential equation .

Day(t) = f(t,y(t)), yla)=hg, tel:=1a,T], xc(0,1) 3.1)
The domain [a, T] is divided into N—subintervals with the grid points t,, = a+nh, n =

0,---,N. Here h represents a uniform step size; h = (T —a)/N. Hence, the domain
N

can be written as [ = U I, where I,, = [t,_1,tn]. Write the solution in the domain
=1
" N
decomposition form y(t) = Z Yn(t), where
n=1
y(t), tely
yn(t) = (3.2)
0, 0.W.

It should be noted herein that since « € (0, 1], we assume the continuity of the solution
at the nodes t,,_1, i.e., Yn(tn—1) = Yn—1(tn_1) for all n > 2. The following Lemma is
the heart of the motivation in this work.

Lemma 3.1. For t € I, equation (3.1) reduces to

DY yn(t) =f(t,yn(t)), yn(tn-1) :{ i’;l(t“”’ $:>12 : (3.3)

Proof. Since t € I,, then based on the restrictions on y(t) (3.2), y(t) = yn (t). In addition,
applying the continuity condition at t = t,,_1, the results is obtained. O

As a result of Lemma 1, we may easily convert (3.3) to integral equation as shown in
the next lemma.

Lemma 3.2. For t € Iy, the FIVP (3.3) on sub-domain 1, is equivalent to the following integral
equation:

_ 1 t o—1
Ynlt) = ynoltnt) + s Lnl (t— 1) (1, yn (1)) dr. (3.4)

Proof. Applying the integral operator J{ | to both sides of equation (3.3), one obtains

JE DS yn(t) = JE f(tyn(t))
(0) —ynltn1) = 1jt (t — )% (1, yn (1)) d
Yn Ynlth-1) = (o) . yYn .

Using the continuity condition at the node t,, 1, i.e., Yn(tn—1) = Yyn—_1(tn_1), the result
is obtained. 0
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The benefits of the present algorithm can be easily observed especially in the large
domains. Additionally, it can be applied for any numerical technique. In the next sec-
tion we will present one example to show the efficiency of the present work.

A simple algorithm can be derived from the integral equation (3.4) is by approximating
the function f(t,yn (7)) at the point t = tn_y; ie, f(T,yn(T)) = f(tn—1,Yn—1(tn—-1)).
Consequently, the integral equation (3.4) will be given by

Un() = yna(tng)+ il [ gt
= oty + it g @5)
= ynoatny) + e gy 6)

Notice that replacing t by t,, will lead to the well-known algorithm, fractional explicit
Euler method [23]. On the other hand, we can easily obtain a fractional implicit method
at t = t,, by approximating f(t,y(7)) in the integral equation (3.4) using the nodes t,_
and t:

(T, yn (1) = —[(T—th—1)f(tn, Yn(tn)) — (T — to)f(tn—1, Yn(tn—1))l.

=~

Therefore, (3.4) will be converted to
x

Flacr et Ynoaltn)) 4t yn ). 3)

Yn(t) =yn_1(tn-1) +

4. Concluding Remarks and Future work

The present work deals with numerical treatment of fractional initial value problems
with large domains. we showed that this problem can be solved iteratively in selected
sub-domains. Derivation of explicit and implicit fractional methods is illustrated.
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