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Abstract

In this paper, we propose the approximate solution of the fractional diffusion equation described by a
non-singular fractional derivative. We use the Atangana-Baleanu-Caputo fractional derivative in our studies.
The integral balance methods as the heat balance integral method introduced by Goodman and the double
integral method developed by Hristov have been used for getting the approximate solution. In this paper, the
existence and uniqueness of the solution of the fractional diffusion equation have been provided. We analyze
the impact of the fractional operator in the diffusion process. We represent graphically the approximate
solution of the fractional diffusion equation.

Keywords: Fractional diffusion equations, Approximate solutions, Atangana-Baleanu, Fractional derivative
operator.
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1. Introduction

Nowadays, fractional calculus has received many attractions. This attraction is due
to the various fractional derivatives used in the fields of fractional calculus. They are
the good compromises for describing the physical phenomena. There exist many types
of fractional derivative operators which are equivalents. The fractional derivatives with a
non-singular kernel as: the Atangana-Baleanu fractional derivative [1], the fractional op-
erators with generalized Mittag-Leffler kernels, see in [2, 3, 4], the Caputo Fabrizio frac-
tional derivative [5]. The fractional derivatives with a singular kernel as: the Riemann-
Liouville fractional derivative [6], the Caputo fractional derivative [6], the generalized
forms of the Caputo fractional derivative and the Riemann-Liouville fractional derivative
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operators in [6, 7] proposed by Thabet et al., the conformable fractional derivative in-
troduced by Khallil in [8]. The discrete version of the fractional operators with Mittag-
Leffler kernels were recently introduced in the literature. In [9, 10, 11], Thabet et al.
propose the fractional derivative operators with Mittag-Leffler kernels and thier integra-
tion by parts, existence and uniqueness of the solutions for initial value problems. In
[12, 13, 14], Thabet et al. propose the discrete forms of the Atangana-Baleanu-Riemann
and the Atangana-Baleanu-Caputo fractional differences, their monotonicity properties
and integration by parts. The physical applications of the fractional calculus interest many
authors [15, 16, 17, 34, 35]. In this paper, we substitute the ordinary derivative used in
the second Fick equation by the Atangana-Baleanu fractional derivative. It is a suitable
problem. Can we accept the substitution? The formalistic form used in this section, is
it physically acceptable? Hristov started the physical interpretations of the fractional dif-
fusion equation described by the Atangana Baleanu fractional derivative in Caputo sense
in [18]. The author has found inadequacy of the fractional diffusion equation repre-
sented by the Atangana Baleanu fractional derivative in Caputo sense. Later in [15],
Sene has proposed the analytical solution of the fractional diffusion equation described
by the Atangana Baleanu fractional derivative in Caputo sense. Due to the form of the
obtained solution. The author hasn’t found the physical interpretation of the model. In
this paper, we come with a new approximate solution of the fractional diffusion equa-
tion described by the Atangana Baleanu fractional derivative in Caputo sense. We use
the integral balance methods as the heat balance integral method (HBIM) and the double
integral method (DIM) [19, 20, 21, 31, 33]. The main contribution of this study is to
give a potential physical interpretation of the fractional diffusion equation described by
the Atangana-Baleanu fractional derivative in Caputo sense. We finish by validating this
model for the physical future uses. In this paper, we also propose the optimal value of
the exponent of the proposed approximate solution. In general, the problem consisting
of getting the exponent is not trivial. Myers and Mitchell introduced two popular meth-
ods in [20, 22]. We have the matching method and the Myers criterion [20, 22]. Many
investigations exist related to the heat balance integral method and the double integral
method [19, 20, 22, 23, 24, 25, 26]. Myers, Mitchell, and Hristov did many of them. They
find many results related to these methods, see in [27, 28, 29, 30]. The main ideas of
the heat balance integral method and the double integral method is the use of the finite
penetration depth. The finite penetration depth is a physical concept.

The paper is organized as follows: we recall the Atangana Baleanu fractional derivative
and its properties in Section 2. In Section 3, we give the constructive equation to obtain,
with Fick first equation and second equation, the fractional diffusion equation described by
the Atangana-Baleanu fractional derivative. In Section 4, we described the basic properties
used in the integral balance methods. In Section 5, we prove the existence and the unique-
ness of the fractional diffusion equation represented by the Atangana-Baleanu fractional
derivative in Caputo sense using Banach fixed point theorem. In Section 6, we propose
the approximate solution of the fractional diffusion equation described by the Atangana-
Baleanu fractional derivative in Caputo sense. In Section 7, we described the matching
method for getting the exponent of the approximate solution of the fractional diffusion
equation expressed by the Atangana-Baleanu fractional derivative in Caputo sense. In
Section 8, we described briefly the Myers method of getting the exponent of the approx-
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imate solution of the fractional diffusion equation represented by the Atangana-Baleanu
fractional derivative in Caputo sense. We finish with the conclusions in Section 9.

2. Derivative operators with non-singular kernels

In this section, we recall the necessaries definitions which we will use in our studies.
For the rest of this section, let’s the function v defined by v: R>g x R>g — R.

The Antagana-Baleanu fractional derivative [1] for a function v, of order « is defined
by

B(x) d [t x
DABRy(x, t :J ,S)Eq [ ———(t—s)% ) ds, 2.1
AR t) = g | YOS SB[~y 9% ) ds 1)

for all t > 0, E4(.) denotes the Mittag-Leffler function [1] with one parameter, and I'(.)
represents the Euler Gamma function.

The Atangana-Baleanu derivative in the Caputo sense [1] of a given function v, of
order « is defined as

B t
DABCy(x, 1) = WJ Vv (x(s),8)Eq [ ——(t—5)* ) ds, (2.2)
1—a 0 11—«
for all t > 0, where I'(.) is Euler Gamma function and E(.) denotes the Mittag-Leffler
function [1] with one parameter.
The Riemann-Liouville fractional integral [6, 32] of a given function v, of order « is
defined as .
1
I*v(x, t) = J (t—s)* v(x(s),s)ds, (2.3)
M) Ja
for all t > 0, where I'(.) represents the Gamma function.
The Atangana-Baleanu fractional integral [1] of a function v, of order « is defined as
11—« o
AB )= —— — IRb ,t), 2.
X V(X ) B((X) + B(OC) X V(X ) ( 4)
forallt > 0.
The Laplace transform of the Atangana-Baleanu fractional derivative [1], in the Caputo
and the Riemann-Liouville sense, are defined as follows

o4 _ eax—1
£ {DABCYY (s) = f(_“is Livi+s“ vi0) (2.5)
11—

Here £ represents the usual Laplace transform.

(DR () = o) STENT 2.6)
1—x
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3. Mathematical modeling of the fractional diffusion equation

In this section, we present the constructive equations. We give the model which we
will use later in our studies. We use the Fick first and second equations. The Fick first
criterion related to the diffusion processes is defined as follows

0
G=—p-. 3.1)
ox
We pick the coefficient of the diffusion material p = 1 into Fick first equation (3.1), it

follows that
ov

—a
The Fick first criterion represents the flux of the system. It is equivalent to the local density.
The Fick second criterion in the context of the Atangana-Baleanu fractional derivative is
given by

G = (3.2)

0G
DABC — _~= 3.3
t [0 8 ax ( )

Replacing equation (3.2) into equation (3.3), we obtain the fractional diffusion equation
in the context of the Atangana-Baleanu fractional derivative. It is expressed as the follow-
ing form

0G
DABC _ ¥
© ox

- 3.4

Finally, the fractional model of the diffusion equation described by the Atnagana-Baleanu
fractional derivative is given by
0%v
ox2’
The resolution of the fractional diffusion equation described by the fractional order
derivative is the subject of many investigations. The numerical schemes and methods are
proposed. They can be applied without any inconveniences with the Dirichlet and the
Neumann boundary conditions. The problem consisting of finding the analytical solution
of the diffusion equation is an open problem. There exist in the literature many proposed
methods. But the uses of these methods depend on the types of the boundaries conditions.
The Fourier sine transform and the Laplace transform can be used to solve the fractional
diffusion equations, see in [15, 16, 17]. The uses of the Fourier sine transform and the
Laplace transform [15, 16, 17] are adequate. They are simple to do, when you use the
Dirichlet boundary conditions defined by v(x,0) = 0 and v(0,t) = V{ (where V; designs a
constant temperature). With the Neumann boundary conditions and the Dirichlet bound-
ary condition expressed as v(x,0) = f(x) and v(0,t) = g(t), the use of the Fourier sine
transform is not trivial and impossible in many cases. It is the limitation of this method.
There exist the Homotopy method introduced by Liao in [? ]. The technique is useful for

(DABC — (3.5)
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getting the analytical approximation of the solution of the fractional diffusion equation.
The application of the homotopy method take into account the boundary condition de-
fined by v(x,0) = f(x). It is simple to be applied when the function f is an exponential
function or a polynomial function. In other cases, the application is not trivial and im-
possible in many cases. In this paper, we use the integral balance methods. What are the
advantages and inconveniences of these methods? We will answer to these questions in
the next sections.

4. Basics calculus for the integral balance methods

In this section, we give the basics calculations which we will use for applying the heat
balance integral method and the double integral method. The integral balance meth-
ods provide an approximate analytical solution (semi-analytical solution) of the diffusion
equations. For that, the form of the approximate solution of the fractional diffusion equa-
tion is expressed in the following form

X\ n
V(X/ t) = (1 - g) ’ (41)
where & represents the finite penetration depth. The above approximate solution is valid
for the parabolic equation which satisfies the called Goodman conditions. Let’s recall the
following calculations. The first relation is represented in the following relationships

® B B X\"
J DABCy(x, t)dx = DABC (1—7) dx
0 Jo o
i ) X n+1 5
= DRBC|——ru (1——)
* | n+1 5 0
[ &
_ DABC
& _n—i—l]
1
= —— _DABCs, 2
n+l1 ¢ 4.2)

The second relation is represented in the following relationships

Jf’ 9% ov
Hdx = ——
0 0x 0X ||x=0
x\n—1
= 1-Z
( 6>Hx:0

|3 >3

(4.3)
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The third relation is represented in the following relationships

5 5 o5 5 o\
J J DABCy(x, t)dxdx = DABC J (1—7> dxdx
0 Jx JOo Jx b

-5
) n+1
— DABC (1-3)

Jo n+1 1)
- 5
_ opaee[o__ ¥ (1_X)“+l]
“ | m+1D(n+2) 5 0
1
= ——————-D}P%% (4.4)

MmM+1)(n+2) <

The fourth relation is represented in the following relationships

5 rd A2 ) 5
0 0
J J —dedx = J [V} dx
0 Jx aX 0 aX x

5
ov

= —| 24

Jo ox

— v(0,1). (4.5)

We use equations (4.2) and (4.3) in the application of the heat balance integral method.
We use equations (4.4) and (4.5) for the double integral method.

5. Existence and uniqueness of the fractional diffusion equation

In this section, we prove using Banach fixed theorem the existence and the uniqueness
of the solution of the fractional diffusion equation. Let’s the function

0%v(x, t)
ox2
Firstly, let’s prove the function 1 is Lipschitz continuous with a Lipschitz constant k;. We

assume the function v is bounded. Applying the norm there exists k; such that we have
the following relationships

P (x,t,v) = (5.1)

o |%ulxt) %v(x,t)
[ (x, t,w) = (x,,v)| _‘ uAlg e H

< K fjulx, t) —v(x, )| (5.2)

Thus, under the assumption the function v is bounded, the function  is Lipschitz contin-
uous with a Lipschitz constant k;. The second step, we apply the Atangana-Baleanu frac-
tional integral on the fractional diffusion equation (5.1), we obtain the following equation

1—« > t
Ww (x,t,\»HWJo

Let’s the map defined by Tv: H — H, where H is a closed set subspace of a Banach space
and the function Tv is defined by

v(x,t) —v(x,0) = (t—s)* 1 (x,t,v)ds. (5.3)

1—«a ¢ x—1
Tv(x,t) = — (x,t,v) + (t—s) VP (x,t,v) ds. (5.4

B )
B(«) B(o)T (o) Jo



Sene / Fractional diffusion equation described by the Atangana-Baleanu derivative 66

Firstly, we prove the operator posed in Eq. (5.4) is well definite. We apply again the
euclidean norm to the following equation

t
ITv(x,t) —v(x,0)|| = Hlj) x, t, v)—i—B((x;xra)JO (t—s)* 1 (x,t,v)ds
< x t ox—1 d
< i v+ gt | (=9 bk vl ds
11—« x =
< Ba)uthvrwwuthvuj ds
S VI A V) (5.5)

B(x) B(a)T ()

where t < a and the Lipchitz constant M comes from the fact { is Lipchitz contonous.
Thus, the operator T is well defined.

We provided a condition under which the operator T is a contraction. We have the
following majoration and the fact the function v is bounded

1—« ok 0%
— < — . .
ITu(x, t) —Tv(x, t)|| < B(o) kq + Bl (o) |lu(x, t) —v(x, t)]| (5.6)
Thus, under the condition
11—« ok 0%
Bl T BlogM(e) < &7

Then the operator T is a contraction. Using the Banach Fixed Point Theorem, the fractional
diffusion equation described by the Atangana-Baleanu fractional derivative has a unique
solution. We know the exact solution exists and is unique. Thus in the next section, we will
propose an approximate solution of the exact solution of the fractional diffusion equation.
The existence and uniqueness of the solution justify the problem consisting of introducing
an approximate solution.

6. Approximation with integral balance methods

In this section, we present the approximate solution of the fractional diffusion equa-
tion described by the Atangana-Baleanu fractional derivative in Caputo sense. Let’s the
fractional diffusion equation expressed by the Atangana-Baleanu fractional derivative in
Caputo sense represented as the following form

%v(x, t)

ABC _
DL v(x, t) = 2

(6.1)

with the initial Dirichlet boundary conditions described by
* v(x,0) =0 forx >0,
v(0,t) =1 fort > 0.

We use the heat balance integral methods and the double integral method of getting the
finite penetration depth.
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6.1. Approximation with the heat balance integral method

In this section, we described the method of getting the finite penetration depth. The
technique consists of integrating the fractional diffusion equation (6.1) defined by the
Atangana-Baleanu-Caputo fractional derivative between 0 to the penetration depth 9.

5 5 A2
0°v(x, t
J DQBCv(x,t)dx = J de
0

0 6x2
1 n
DABC -
n+1 Ny )
1 n
DABC -
n+1 )
1
DABCs — nn+1) (6.2)

d

From equation (6.2), we multiply by the finite penetration depth 5. We obtain the follow-
ing fractional differential equation

DABCS2 —2n(n+1). (6.3)

We use the Laplace transform of the Atangana-Balueanu-Caputo fractional derivative to
both sides of equation (6.3). We have under assumption 56(0) = 0, the following expres-
sions

B(o) s*8(s) —s*18(0)  2n(n-+1)
T—a  s*+ % B s
B(a) s%8(s)  2n(n+1)
T—os*+ 7% s
= o2n(n+1)(1—-a)  2nn+1)a
&ls) = B(x)s - B(a)sxtl’ (6.4

where § represents the usual Laplace transformation of the function 5. We Apply the
inverse of the Atangana-Baleanu fractional derivative in Caputo sense to both sides of
equation (6.4). We obtain the following relationships

2nn+1)(1—«) 2n(n+1)at*
B(x) B(o)I(1+ o)
V2n(n+1)(1—«) t2
5(t) = ++/2n(n+ 1) . (6.5)
(t) B(«x) \/B )/ T(a+1)
The finite penetration depth of the fractional diffusion equation described by the Atangana-

Balueanu fractional derivative in Caputo sense obtained with the HBIM method is given
by

V/n+1)(1 -« t2
5(t) = o) ++v2n(n+1)a \/B \/F(oc—i—l)' (6.6)

Using Atangana-Baleanu fractional integral the finite penetration depth of the fractional
diffusion equation described by the Atangana-Balueanu fractional derivative in Caputo
sense obtained with the heat balance integral method is given by

5(t) = v/2n(n+1)4/IAB (1) (t). 6.7)
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The approximate solution of the fractional diffusion equation (6.1) described by the Atangana-
Balueanu fractional derivative in Caputo sense is obtained by replacing the penetration
depth 6 into equation (4.1)

(6.8)

n
X\ Y
vix,t)=(1—=) =(1-— .
(1) < 6> < V2n(n+1)/148 (1) (t))
The similarity variable is given by x/1/I4B (1) (t). In other words, we observe the Atangana-
Baleanu fractional derivative generates it fractional integral in the similarity variable. We

notice, using equation (6.8) and the fact I2B, (1) (t) = t, we recover the penetration depth
of the classical diffusion equation when « = 1. That is, see in [19, 20, 22, 23, 24, 25, 26]

5(t) = v/2n(n+ 1)Vt (6.9)

The approximate solution of the classical diffusion equation described by the integer order
derivative is given by

=1 =i )
e 5/ Vanin+1)vt )
The similarity variable is given by x/+v/t.

Let’s discuss the validity of the fractional diffusion equation modeled with the Atangana-
Baleanu fractional derivative in Caputo sense. We first notice when we use the Caputo
fractional derivative the finite penetration depth is given by

(6.10)

5(t) = v/2n(n+1)4/IRE (1) (t). (6.11)

The similarity variable is given by x/4/IRE (1) (t). In other words, the Caputo fractional
derivative generates its fractional integral into the similarity variable. When o« = 1, we
recover the penetration depth of the classical diffusion equation. In other words, when
we use the integer order derivative the finite penetration depth is given by

5(t) = v/2n(n + 1)\/Iclmsical (1) (1) = v2n(n £ VA (6.12)

The similarity variable is given by x/ \/ Igtassical (1) (t). In other words, the integer order

derivative generates its classical integral into the similarity variable.

In [18], the author tries to find a physical interpretation of the fractional diffusion
equation described by the Atangana-Baleanu fractional derivative in Caputo sense. Due
to the form of the penetration depth, the author hasn’t found a physical interpretation
of the fractional diffusion equation. The issue of this work contributes to give a possible
interpretation of this model. The penetration depth of the fractional diffusion equation
obtain with HBIM method is realistic. Its form is due to the form of the fractional in-
tegral of the Atangana-Baleanu fractional derivative. The function x/+/I4B (1) (t) repre-
sents the non Boltzmann similarity variable of the fractional diffusion equation. Thus, the
Atangana-Baleanu fractional derivative in Caputo sense can be used for the modeling of
the fractional diffusion equations.

In conclusion, the fractional derivative operator or the integer order derivative gener-
ates their integrals into the expression of the similarity variable. The Atangana-Baleanu
fractional derivative represents a good compromise in physical modeling.
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6.2. Approximation with the double integral method

In this section, we described the double integral method. The method consists of inte-
grating the fractional diffusion equation represented by the Atangana-Baleanu fractional
derivative in Caputo sense between y to the penetration depth 6. In second the integra-
tion, we integrate the obtained fractional differential equation in the first step between 0
to the penetration depth 6.

r r DQBCv(x,t)dx = Jé r de

0 Jx 0 Jx aXZ
1 ABCg2 _ 1
m+1)(n+2) «
DABCS2 = (m4+1)(n+2)
DABCS? = (m+1)(n+2), (6.13)

We obtain the fractional differential equation described by the Atangana-Baleanu frac-
tional derivative in Caputo sense defined.

DABCS? — (n+1)(n+2). (6.14)

We use the Laplace transform of the Atangana-Balueanu fractional derivative to both sides
of equation (6.14). We have under assumption 5(0) = 0, the following expressions

B(x) s*8(s) —s*15(0)  (n+1)(n+2)
1—« s* 4 % N s
B(x) s*3(s) = (n+1)(n+2)
1—as*+ 1% N s
= M+ +2)(1—-a)  (m+1)(n+2)x
§2(s) = IO s (6.15)

where & represents the usual Laplace transformation of the function 5. We Apply the
inverse of the Atangana-Baleanu fractional derivative Laplace transformation to both sides
of equation (6.15). We obtain the following relationships

M+1)n+2)1—a) M+1DM+2)ot™

2 _
o) B(a) T B+ o
AV I+1)n+2)(1 -« t2
S(t) = e +\/(n+1)(n+2)a\/8(“)w((xﬂ). (6.16)

The finite penetration depth of the fractional diffusion equation described by the Atangana-
Balueanu fractional derivative in Caputo sense obtained with the double integral method
is given by

V/+1D(n+2)(1—«) t2
§(t) = 0 +\/(n—i—1)(n+2)o¢\/B(“)\/r((X+1).

(6.17)
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We use the Atangana-Baleanu fractional integral. Thus, the finite penetration depth of the
fractional diffusion equation described by the Atangana-Baleanu fractional derivative in
Caputo sense obtained with the double integral method is given by

5(t) = (n+1)(n+2)4/IAB (1) (1). (6.18)

We replace the above penetration depth into equation (6.1). The approximate solution of
the fractional diffusion equation described by the Atangana-Baleanu fractional derivative
in Caputo sense is given

vix, t) = (1—E X

zs) :(1_\/(n+1)(n+2)\/IQB(1)(t)> '

We use equation (6.17) and the fact IéEl (1) (t) = t. We recover the penetration depth
of the classical diffusion equation when « = 1, see in [19, 20, 22, 23, 24, 25, 26]

(6.19)

5(t) = v(n+1)(n+2)Vt. (6.20)

The approximate solution of the classical diffusion equation described by the integer order
derivative is given by

vixt) = (1-3) =

n X n
6> (1_ ,/(n+1)(n+2)¢{> '

7. Matching method exponent n

(6.21)

In this section, we investigate the values of the exponent n of the approximate solution
for the fractional diffusion equation described by the Atangana-Baleanu fractional deriva-
tive in Caputo sense, proposed in this paper. There exist many discussions related to the
value of the exponent n, see in [20, 22]. There exist the Myers criterion method consist-
ing of minimizing the Langford function [20, 22]. Another method proposed by Myers is
called the matching criterion [22]. In the matching method, we consider the finite pen-
etration depth generated by the HBIM and the finite penetration depth generated by the
DIM are equals. In many investigations [20, 22], the authors choose n =2 or n = 3. In
this section, we use the matching method. Note the matching method stated by Myers in
[22] was used and explained physically by Hristov in many works [19, 23, 25, 26]. We
use this method in this section; we have the following relationships

2n(n+1)y/IRL(1) (1) = Mm+1)(n+2)4/I2B (1) (1)
2nn+1) = n+1)(n+2)
2n = n+2
n = 2. (7.1)

In this case, we have the following approximate solution for the fractional diffusion equa-
tion (6.1) described by the Atangana-Baleanu fractional derivative. The finite penetration
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depth is obtained with HBIM method or the DIM method

x\2 1 X 2
8) S\ 2v3VIAP (M)

We depict in Figure 7, the approximate solution of the fractional diffusion equation
described by the Atangana-Baleanu fractional derivative in three-dimensional space.

v(x, t) = (1 — (7.2)

difatanganal-eps—-converted-to.pdf

Figure 1: Approximate solutions of diffusion equation, o« = 0.5.

We consider the penetration depth obtained with the HBIM. We depict in Figure 7,
the approximate solution of the fractional diffusion equation described by the Atangana-
Baleanu fractional derivative in two-dimensional space, with t = 0.6 and for different
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values of the order «. We observe all the curves decrease and follow the increase of the
order «. Thus we note a retardation effect.

difatangana2-eps-converted-to.pdf

Figure 2: Approximate solutions of diffusion equation, different « and t = 0.6.

8. Myers criterion related to the exponent n

In this section, we describe the Myers optimization principle of getting the exponent n
briefly. We use the Langford function defined by

1 0%v(x, t) 2
L, = L [DQBCv(x,t) -5 ax 8.1)
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Myers in [22] proposes to minimize the above function of getting the exponent n. The
problem consists of finding an optimal exponent n under which the Langford function is
minimized. The criterion seems to be simple, but the applicability in the real problem
is not trivial. But we are sure that the exponent found with Myers criterion is the best
exponent n for the assumed profile of the fractional diffusion equation described by the
Atangana-Baleanu fractional derivative in Caputo sense. Myers criterion is used in many
Hristov works related to the application of the integral balance methods, see in [19, 23,
25, 26]. Let’s establish the explicit form of the Langford function. Let’s the preliminary
calculations. Firstly, the Atangana-Baleanu fractional derivative in the Caputo sense of the
proposed approximate solution is given by

X\ M
DABCy(x,t) = DABC (1 — S)
 NABC nx  n(n+1)x?
2
— _nxDABCs 14 WDQB%—Z. (8.2)
The following expression gives the second order derivative of the approximate solution.
0%v(x, t) nn-—1) X\ n—2
- 1-2)" . 8.3
ox? 52 ( 8 (8.3)

Using equation (8.2) and equation(8.3) into the Langford function, we get the function
defined by

1 2 —21?

1 —1 2

Lf:J [—nfox\Bcé—lJrn(n;)xDQB%—Z—“(T;Z )(1—z)n } dx, (8.4
0

where the finite penetration depth & is obtained with the HBIM method or the DIM
method. The main consequence of the Myers criterion are at the boundary condition; we
have the particular values of the exponent n. That is the Goodman boundary condition
must be satisfied. The Goodman boundary conditions are defined by

ov(5,t)

V(5 1) = =1 =0, (8.5)

We notice when the function v is the exact solution of the fractional diffusion equation de-
scribed by the Atangana-Baleanu fractional derivative in Caputo sense; then the Langford
function is null, thatis L = 0.

At the point x = 0, the the Langford function with the finite penetration depth obtained
with the HBIM method or the DIM method, we have

1 2
L¢= J [T‘(“_l)] =0. (8.6)

0 52

From which we get easily the exponent at the first boundary condition n = 1.
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At the x = 4. In other words, when the coordinate x converges to the penetration
depth &. In the way to satisfies the second Goodman boundary condition, we must impose
the Langford function, when x approaches , must be positive or null. That is

im r [“(“—1) (1- X)“_z] o 8.7)

x—0 Jo 52 )

Then we obtain the exponent n >= 2.

The important remark is the exponents n = 1, and n = 2 got at the boundary condi-
tions are not, in general, the optimal exponent n which minimize the Langford function.
Alternatively, the method of finding the optimal exponent n when x > 0 and x # 6 consists
of applying the Myers criterion proposed above or see in Hristov’s works [19, 23, 25, 26].
The problem is not trivial and is not the subject of this study. In this paper, we accept the
value of the exponent n = 2 found in the matching method in the previous section.

9. Conclusion

In this paper, we have discussed the approximate solution of the fractional diffusion
equation described by the Atangana-Baleanu fractional derivative in Caputo sense. We
have used the heat balance integral method and the double integral method of getting
the finite penetration depth. The main question is to bring the physical interpretation
of the fractional diffusion equation described by the Atangana-Baleanu fractional deriva-
tive in Caputo sense for the physical use. We conclude the fractional diffusion equation
represented by the Atangana-Baleanu fractional derivative in Caputo sense has a physical
signification. The form of the similarity is due to the form of the fractional integral gen-
erated by the Atangana-Baleanu fractional derivative. For future works, we will focus the
advantages of the generalized Atangana-Baleanu-Riemenn and Atangana-Baleanu-Caputo
derivatives developped by Thabet et al. in context of the fractional diffusion equations.
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