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Abstract

In this study, we present a mathematical model for studying the dynamics of varicella disease transmis-
sion incorporating Caputo’s fractional derivative to account for memory effects in disease spread. The aim of
this research is to construct a robust mathematical framework that combines fractional calculus with disease
modeling and explore fractional order parameters impacts on diseases propagations. Thus, the significant
contribution to knowledge is the improved understanding of infectious diseases? dynamism as influenced
by memory effects thus providing profound insights which can be used as cornerstones in developing pre-
ventive measures. The technique of this study relies on integration a system of differential equations which
are subjected to the Caputo fractional operator. A variety of data sources were used, including existing epi-
demiological varicella literature for model calibration. We begin by analyzing the existences and uniqueness
of the solutions to this model, utilizing the Banach Fixed-point theorem, the linear stability analysis of the
model, using Lyapunov Functional approach. The analysis also includes key epidemiological parameters (Ry:
basic reproduction number) and dynamic response of the disease-free equilibrium. The effect of the fractional
order parameter is investigated through numerical simulations performed by appropriate computational tools
especially concerning an infection peak and asymptotic behavior. The results indicate that the varicella trans-
mission dynamics are related to order parameter of fractional order «. The results of this study demonstrated
that to better describe epidemiological data, it is essential to introduce fractional order operators within
infectious disease models able to represent nonlocal and complex phenomena.

Keywords: Banach fixed-point, Lyapunov function, Fractional derivative, Stability analysis, Numerical
results.
2010 MSC: 26A33, 65L05, 65M06, 93C10.

1. Introduction

In recent years, the application of mathematical modeling to the study of infectious
diseases has become increasingly advanced, allowing for a more shaded understanding of
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disease transmission dynamics. This literature review explores the evolution of mathemat-
ical modeling in the context of varicella-zoster virus (VZV) and chickenpox, with a specific
focus on the utilization of the Caputo operator to enhance the realism of these models.
Varicella, also known as chickenpox, is an infectious disease caused by the varicella-zoster
virus (VZV). It primarily affects children, presenting with a characteristic itchy rash, red
spots, and blisters that spread across the body. While varicella is generally mild in chil-
dren, it can lead to severe complications in adults and immunocompromised individuals,
such as pneumonia, encephalitis, and bacterial skin infections [9].

Recent research has delved into the pathophysiology of VZV, focusing on its ability
to remain dormant in the body and reactivate later as herpes zoster, or shingles, high-
lighting the long-term implications of the virus [27]. Understanding the mechanisms of
VZV latency and reactivation is crucial for developing effective treatments and preven-
tive measures. Studies have shown that the virus can persist in the sensory nerve ganglia
and reactivate under certain conditions, leading to shingles, a condition characterized
by a painful rash and potential complications like postherpetic neuralgia [17]. This re-
activation poses a significant health burden, particularly for older adults and those with
weakened immune systems[4].

The global impact of varicella is substantial, especially in regions lacking routine vac-
cination programs. The World Health Organization (WHO) has reported significant mor-
bidity and economic costs associated with varicella outbreaks. In countries where vacci-
nation programs are well-established, there has been a marked decrease in the incidence
and severity of the disease, underscoring the effectiveness of immunization efforts [30].
Despite the success of vaccination programs in many developed countries, disparities in
vaccine coverage and access continue to pose challenges globally. In low- and middle-
income countries, limited resources and infrastructure often hinder the implementation of
widespread vaccination campaigns, leading to persistent outbreaks and high disease bur-
den [12]. Addressing these disparities is essential for achieving global control of varicella
[19]. Varicella is highly contagious, spreading primarily through respiratory droplets and
direct contact with the fluid from blisters.

The basic reproduction number (RO) for varicella ranges from 8 to 12, reflecting its
high transmissibility. While the mortality rate for varicella is relatively low, the disease
can lead to severe complications, particularly in high-risk groups such as pregnant women,
newborns, and immunocompromised individuals [23]. Complications arising from vari-
cella infections include secondary bacterial infections, pneumonia, encephalitis, and hem-
orrhagic conditions. These complications can significantly increase the risk of severe out-
comes and mortality, particularly among those with compromised immune systems or
underlying health conditions [16]. Effective management of varicella cases, especially in
high-risk populations, is essential to reduce the associated morbidity and mortality [26].
Vaccination remains the most effective intervention against varicella, significantly reduc-
ing the incidence and severity of the disease. The introduction of the varicella vaccine
has led to a substantial decline in varicella cases and related complications in countries
with robust immunization programs [20]. In addition to vaccination, antiviral treatments
such as acyclovir and supportive care play crucial roles in managing severe varicella cases
and preventing complications [29]. Public health strategies, including widespread vacci-
nation campaigns and rigorous disease surveillance, are essential for controlling varicella
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outbreaks. Effective communication and education about the benefits of vaccination can
help increase vaccine uptake and ensure community protection [14]. Targeted vaccination
efforts aimed at high-risk populations, such as healthcare workers and immunocompro-
mised individuals, are also vital in reducing the overall burden of the disease [24].

The classical epidemiological models, such as the SIR (Susceptible-Infectious-Recovered)
and SEIR (Susceptible-Exposed-Infectious-Recovered) models, have been instrumental in
studying the transmission dynamics of varicella. These models utilize ordinary differen-
tial equations (ODEs) to describe how individuals move through different disease states
over time. By estimating parameters like the basic reproduction number (RO) and infec-
tious period duration, researchers can predict the potential impact of interventions such as
vaccination and quarantine on disease spread [15]. These models have been extensively
applied to varicella to understand patterns of transmission within populations. They pro-
vide insights into how vaccination coverage influences disease incidence and how differ-
ent control measures can mitigate outbreaks. The classical models serve as foundational
tools for epidemiologists, facilitating the evaluation of public health strategies and policies
aimed at reducing varicella burden [18].

Fractional models in epidemiology involve derivatives of non-integer order, allowing
for the incorporation of memory and hereditary properties into biological systems. The
adoption of fractional calculus, particularly using the Caputo operator, has emerged as
a promising approach to enhance the fidelity of disease models. These models can cap-
ture the long-term memory effects and anomalous diffusion observed in the transmission
dynamics of infectious diseases [3]. In the context of varicella, fractional models have
been employed to overcome the limitations of classical approaches. By utilizing fractional
derivatives, researchers can better simulate the persistence and recurrence behaviors of
varicella infections, which are often not fully captured by traditional models [11]. This
capability allows for more accurate predictions of disease spread and provides insights into
the effectiveness of intervention strategies. Researchers have extended classical epidemi-
ological models to include fractional derivatives, leading to the development of fractional-
order differential equations. These extended models provide a more flexible framework
for capturing the complexities of biological systems [32]. In the case of varicella, fractional
models have been used to explore the impacts of various factors such as vaccination, treat-
ment, and social distancing on the spread of the disease [1]. The inclusion of fractional
derivatives allows for the modeling of memory effects, which are crucial for understanding
diseases like varicella that can exhibit latency and reactivation. This is particularly rele-
vant for varicella-zoster virus, where the virus can remain dormant and reactivate later in
life as shingles.

Fractional models can better capture these dynamics compared to classical models[13].
By using fractional-order differential equations, researchers can more accurately represent
the persistence of the virus in a population over time. These models have shown improved
performance in fitting epidemiological data and predicting disease outcomes under vari-
ous scenarios. This flexibility enhances the ability to simulate and analyze the effects of
public health interventions [21]. Caputo fractional models offer several advantages over
classical models, particularly in their ability to capture memory effects and non-local in-
teractions in disease transmission. These models provide a more accurate description of
the dynamics of infectious diseases, especially in cases where the disease exhibits complex
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temporal patterns [28]. One significant advantage of Caputo fractional models is their
ability to incorporate the history of the disease into the modeling process. This is crucial
for diseases like varicella, where past exposure and immunity levels can influence current
and future transmission dynamics. By accounting for these historical effects, Caputo mod-
els enhance the accuracy of predictions and the effectiveness of intervention strategies
[8, 34, 33]. Additionally, Caputo fractional models improve the fit of theoretical models
to real-world epidemiological data. This improved fit leads to better predictive power
and more reliable forecasts, which are essential for effective public health planning and
response. The flexibility of Caputo models allows for the integration of various biological
and epidemiological factors, providing a comprehensive framework for disease modeling
[31].

This paper will present the task of finding and investigating a mathematical model
of the transmission process of varicella in the framework of the Caputo operator. Due
to presence of fractional derivatives which are responsible for memory effects and non-
uniformity in the distribution of the transmission rates in varicella [3]. The analysis will
test the model with regard to the bare reproduction number, stability of the equilibrium
points, and effect of parameters in the spread of the disease [10].

2. Mathematical model

The classical model presented in this study builds upon the Almeida, R. et al., [2],
Atangana and Baleanu [3] and D’Ovidio, M. et al. [10] framework by incorporating these
additional complexities. Specifically, it introduces asymptomatic carrier, partially immune
individual, pathogen concentration in the environment. These enhancements provide a
more comprehensive and realistic representation of the varicella (chickenpox) transmis-
sion dynamics, making the model a valuable tool for public health planning and interven-
tion.

a5 :A—BS(IJFA> — (m+u)S + 6P,
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Table 1: Description of the Parameters and values for the Varicella Model
Parameters Description Caputo Classical Source
A Recruitment rate 38 individu- | 38 individu- | [6]
als per year als per year

B Transmission rate 0.8 0.8 [7]

T Vaccination rate 0.7 0.7 [23]

u Natural death rate 0.008 per | 0.08 per year | [30]

year

o Rate at which exposed indi- | 0.071 per day | 0.071 per day | [5]
viduals become infection

Y Recovery rate 0.056 per day | 0.056 per day | [2]

YA Recovery rate from asymp- | 0.056 per day | 0.056 per day | [9]
tomatic carriers

Yp Rate at which infected indi- | 0.096 per day | 0.096 per day | [20]
viduals transition to the par-
tially immune individuals

YR Rate at which infected indi- | 0.096 per day | 0.096 per day | [10]
viduals transition to the re-
covered individuals

) Fraction of exposed individ- | 0.15 0.12 [12]
uals who becomes asymp-
tomatic carriers

5 Rate at which partially im- | 0.002 per | 0.02 per year | [22]
mune individuals lose immu- | year
nity

[0} Rate at which infected indi- | 0.05 per year | 0.05 per year | [25]
viduals contribute to the en-
vironmental pathogen con-
centration

k Decay rate of the pathogen | 0.2 0.2 [28]
in the environment

x Fractional order - 0 <x<1 [3]

The Classical Model

1. Asymptomatic Carriers (A): The model assumes presence of asymptotic carriers
which are not manifested by symptoms but can further disseminate the disease. This
makes it look more real as varicella spreads mainly by asymptomatic transmission.

2. Vaccinated Individuals (V) and Partially Immune(P): Our model consists of com-
partments for the vaccinated as well partially immune pop jobs which allows us to
qualitatively simulate vaccination programmes plus naturally-acquired immunity.

3. Environmental Pathogen Concentration (W): The W input allows the model to con-
sider intermediate variables in transmission from environment, an indirect route
that may not operate under all circumstances.
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4. Memory Effects with Caputo Operator: Here, by using the Caputo fractional deriva-
tive our model is able to account for memory effects which makes it a more realistic
representation of disease dynamics over time - incorporating long terms influences
such as historical exposures and immunities held.

Satisfying these characteristics will give our model a fuller representation of the dynamics
of varicella transmission, which in turn may inform improved public health strategies and
interventions. From the system of equations (2.1)

We differentiate the total population

N = S+E+I+A+V+P+R with respect to time t

dN  d§S dE dI dA  dvV dP  dR

Substituting the differential equations in 3.1
dN [+A I+A
+ ((1—p)oE—ypl—yrI—ul) + (poE — (yaA+H)A) + (S—pV) '
+ (vpI = (3+1)P) + (YrI+YAA—UR).
By combing similar terms
dN
E:/\—u(s+‘E+I+A+V+P+R):/\—uN. (2.4)

Thus, the rate of change of the total population N remains,

dN
— = A—uN.
dt K
This result indicates that the total population N changes due to the influx of new individ-

uals (A) and the natural death rate across all compartments (uN).

3. Analysis of the Caputo Fractional Order Model for SEIAVPRW

The Caputo fractional derivative is a generalization of the classical integer-order deriva-
tive to non-integer orders. This approach is useful in modeling systems with memory ef-
fects or hereditary properties. Applying the Caputo fractional derivative to the SETAVPRW
model involves replacing the time derivatives in the classical model with Caputo fractional
derivatives of order o,where 0 < o« < 1.

3.1. Caputo Fractional Derivatives
The Caputo Fractional derivatives of a function f(t) of order « is defined as:

1 tofl()
M —o) Jo =1~ dr. (3.1)

CDEf (1) =

Where I' is the Gamma function
We define the Caputo Fractional derivative for the classical (SEIAVPRW) model. the state
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variables will be denoted as S(t), E(t), I(t), A(t), V(t), P(t), R(t) and W(t) and the frac-
tional order will be «.

“D§S (t)=

1 Jt BS(1) AT — (o+u) E(T)
(1—oc) Jo (t—1)™

)
I(t) + A(t)

=BS(t) S (o+h) E(,

1 [t (1—p)oE(T)— (vp(T) +Yr(T)+1) I(T)
I (1—x) Jo (t—1)™
= (1 —=p)oE(t)— (vp(T) +vr(T)+1) I(t),
1 (" poE(1) — (ya+wA(T)
I (1—od) Jo (t—1)™
= poE(t) — (ya+wA(t),
1 't wS(t)—pV(1)
I'(1—o) Jo (t—1)™
= nS(t)—puV(t),
N 1 [t yel(t) = (5+wP(r)
PDEPOT g ), T ar
=vpl(t) — (3+p)P(t),
1 * YRI(T) =y AA(T)—pR(T)
I'(1—od) Jo (t—1)™
= vYrI(t)—vaA(t)—uR(t),
1 t pI(t) —kW(1)
I'(1—od) Jo (t—0)™
= ¢pI(t) — kW(t).

Cryx
DgLE (t)=
o,t()r

DG (t)= dt

drt

CDgftA (t)=
(3.2)

DGV (t)= dt

“D§R (t)= dt

drt

“DgW (t)=

3.2. Positivity and Boundedness

We need to ensure that the solutions for S(t), E(t), I(t), A(t), V(t), P(t), R(t) and W(t)
are non-negative and bounded for all t > 0.

Positivity
We show the positivity of the solution, by proving that if the initial conditions
5(0), E(0),1(0), A(0), V(0), P(0), R(0), W(0)

are non-negative, then S(t), E(t), I(t), A(t), V(t), P(t),R(t) and W(t) remain non-negative
forall t > 0.
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For the positivity of S(t)

I(t) + A(t)

“D§S (t) =A—BS(t) N

— () S(t)+8P(t). (3.3)
Since A>0, B, 7, 1, >0 and I(t), A(t), P(t) >0, it shows that S(t) will remain non-negative
if the initial conditions S(0) >0.

For the positivity of E(t)

I(t) +A(t)

CDGLE (1) =BS(t) ——

— (o+u) E(t). (3.4)
Since B3, t, u>0 and S(t), I(t), A(t) >0, it shows that E(t) will remain non-negative if the
initial conditions E(0) >0.

For the positivity of I(t)

CDEI(t) =(1—p)oE(t)— (vp + YR+ I(t). (3.5)

Since o, vy, u>0 and E(t) >0, it shows that I(t) will remain non-negative if the initial
conditions I(0) >0.
For the positivity of A(t)

CDFLA (1) =poE(t) — (YA +HA(L). (3.6)

Since p, 0, YA, 1>0 and E(t) >0, it shows that A(t) will remain non-negative if the initial
conditions A(0) >0.
For the positivity of V(t)

DGV (1) =nS(t)—pV(t). (3.7)

Since 7, u>0 and S(t) >0, it shows that V(t) will remain non-negative if the initial condi-
tions V(0) >0.
For the positivity of P(t)

CDGP (t) =ypI(t) — (5+1)P(1). (3.8)

Since yg, 6, 10 and I(t) >0, it shows that P(t) will remain non-negative if the initial
conditions P(0) >0.
For the positivity of R(t)

DFR (1) =vI(t)—yAA(t)—uR(t). (3.9)

Since v, ya, =0 and I(t) >0, it shows that R(t) will remain non-negative if the initial
conditions R(0) >0.
For the positivity of W(t)

CDGW (t) =dI(t) — kW(t). (3.10)

Since ¢, k>0 and I(t) >0, it shows that W(t) will remain non-negative if the initial con-
ditions W(0) >0.
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Boundedness
To prove the boundedness, we show that there exist constants Sy, Eam, Im, Am, VM, Pm, Rm, W
such that

lUm supS (t)<Sm, lim supE (t) <Em, lim supl(t)<Ipm, UWm supA(t)
t—>o0 t—>00 t—>00 t—o0
<Am , Um supV (t) <Vm, Um supP (t)<Pm, lim supR(t),
t—>o00 t—ro0 t—s00
<Rm , lim supW(t) <Wnm
t—ro0
(3.11)

Consider the total population N(t)=S(t) +E(t) +I(t) +A(t) +V(t) +P(t) +R(t) + W (1).
Summing the equation gives

CDEN (t) =A—uN(t) — kW(t)
Since W(t)>0 and p> 0, the equation simplifies to
CDYEN (1) SA—pN (1)
This is a linear fractional differential equation. Its solution is given by

N <D
n

Hence, the total population N(t) is bounded by 2.
Now, each compartment is a function of the total population and since N(t) is bounded,
each compartment is also bounded. Specifically, there exist constant

S, Emu Im, AM, VM, Pm, Rm, W
such that:
S(t)<Sm, E(t) <Em, I(t) <Im, A (1) <AM, V(1) <VMm, P (1) <Pm, R(1) <Rm, W () <Wnm

Where Sm, Em, Im, Am, Vm, Pm, Rm, Wi are derived from the maximum possible val-
ues that each compartment can attain, considering the bounds on N(t).

3.3. Existence and Uniqueness

To prove the existence and uniqueness of solutions for the Caputo fractional model,
we need to use results from the theory of fractional equations. We will employ the Ba-
nach fixed-point theorem (also known as the contraction mapping theorem), which is a
common tool for establishing the existence and uniqueness of solutions to fractional dif-
ferential equations.
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Lipschitz condition

The Lipschitz condition ensures that the function f(t,y) does not change too rapidly and
that the system is well-behaved. Specifically, we need to show:

£ty —f(ty2)|| <L ly1—yol|- (3.12)

For some constant L and for all yq,y, in the domain of interest.
For the first equation

F(ty1)—F(tya) | = ‘(A—le ( ) () $145Py) — (A—BS, (
_ 'B (Sl 11+A1_ L+A>

) — (7t4+u) Sp+6P7)

N S2 N >—ﬂ(Sl—Sz)—u(51—52)+5(Pl—Pz)

(3.13)

Using properties of absolute values and the fact that the coefficient 3, 7t, 1, 6 are constant,
we can bound the expression:

L+A L+A
[F(tyn) —F(tya)| <B S —S2 x| F7EIS1—S2l +1t11 -5/ +5 [Py Pl
(3.149)
[1+A1 L+A So+S
<B (181 [ 2 | 2222 L Ay ) (1) IS1—Sa] 48 [P1—Pa
N N N
Since S, I, A, P are bounded by N, we can factor out ||y;—y»||:
|f(ty1)—f(ty2)| <L ly1—y2ll. (3.15)

Where L is a constant that depends on the parameters and the bounds of the state vari-
ables.

Banach’s fixed-point theorem

Banach'’s fixed-point theorem (also known as the contraction mapping theorem) is a fun-
damental result in fixed-point theory. It provides conditions under which a function (or
operator) will have a unique fixed point. A fixed point of a function T is a point y such
that T(y) = y.

Let (X,d) be a non-empty complete metric space with a contraction mapping T: X—X.
Then T has a unique fixed point yeX. Additionally, for any initial point yp€X, the sequence
defined by yn+1=T(yn) converges to the fixed-point y.

A contraction mapping is a function T that brings points closer together, i.e, there exist a
constant o<k < 1 such that for all y;, y€X.

d(T(y1),T(y2))<k.d(y1, y2). (3.16)

For the Caputo fractional derivative, the integral form of the differential equation is

DS (1) = f(t,y(t))
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can be transformed into:
t
y(t) =y (0)+r(10<) JO (t—1)* (T, y(1))dT. (3.17)

This form allows us to define an operator T acting on a suitable function space.

For our system, let’s write the integral form of each equation.

For instance, for S(t):

1t _ I A

- J (t—1)% 1(/\—BS(T)M
0 N

Similarly, we write the integral forms for E(t), I(t), A(t), V(t), P(t), R(t) and W(t).

We need to show that our operator T is a contraction mapping. This involves demonstrat-

ing that there exists a constant k< 1 such that for all y1(t) and yo,

ITy1) =Ty )l <k [ly1—y2ll- (3.19)
Consider the operator T defined by

— (7t+u) S(T)+8P(1))dt. (3.18)

t
T)() = y(0)+—— j (1) % Lf(r, y (1)) dr. (3.20)

For any two functions y;(t) and y(t),

t

Tly) (0—T(y2) (1) =r(10() JO () (91 (1) — F(ya(T))) d. (3.21)

Using the fact that f satisfies the Lipschitz condition,
f(ty1(1) — flty2 (1)) <Lly1 (t)—y2(T)l. (3.22)

Tlya) (0T (y2) () <L) L (t—1) % fy1 (1) —ya (1) dr

x
This shows that T brings y;(t) and y»(t) closer together, proving T is a contraction map-
ping with a contraction constant k :ﬁ.

By Banach’s fixed-point theorem, since T is a contraction mapping on a complete metric
space, T has a unique fixed point. This fixed point corresponds to the unique solution of

our integral equation.

3.4. Disease-free equilibrium (DFE) of the Caputo fractional model

The DFE corresponds to the state where there are no infections in the population. Thus,
we set E(t)=0, I(t)=0, A(t)=0, P(t)=0. R(t)=0 and W(t)=0. We denote the equilibrium
values as S*, V*.

At the DFE, the derivatives with respect to time should be zero. Therefore, we set the
left-hand side of each equation to zero and solve for S*, V*.

0 =A—7tS*—uS*+6P*

0 =nS*—uVv*

0 =ypl*—(+wW)P* . (3.23)
0 =yrI"—yA—uR"

0 =pI*—kW*
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Since I*=0, A*=0, P*=0, R*= 0 and W*= 0, we have the simplified system:

0 =A—mS*—uS*
" W (3.24)
0 =nS"—nVv
From the first equation,
0 :/\—ﬂs*—l.ls*:>\/*:7[s _ A
oo p(mtp)
The disease-free equilibrium (DFE) for the Caputo fractional model is given by
A A
(S*/ E*/ I*/ A*/ V*I P*/ R*/ W*) = (71 01 O/ 0/ 7-[7/ 0/ 0/ O) (325)
T w(7rtp)

This solution indicates that, in the absence of infection, the population will stabilize with
only susceptible and vaccinated individuals, with no exposed, infected or recovered indi-
viduals.

3.5. The basic reproduction number Ry

This is a critical threshold parameter that determines whether an infectious disease can
invade and spread through a population. For the Caputo Fractional model, we use the
Next-Generation matrix approach to derive Ry.

We focus on the infected compartments E and I and linearize the system around the
disease-free equilibrium (DFE).

Next-generation matrix

The Next-Generation matrix, FV—! is derived from the matrices F (new infection terms)
and V (transition terms) evaluated at the DFE.

%« A *x__ TN
At the DFE, $*=_/4, Vi =_T2

The new infection term (F) is given by

BS*& BS*F O
F= 0 0 0 (3.26)
0 0 0
. . x« A
Substituting S = . .
BAL) B(:2AL) 0
F= 0 0 0 1. (3.27)
0 0 0
And the transition term (V) given by:
o+p 0 0
V= —0 v+ 0 . (3.28)

—po 0 vyatu
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To compute V~!, we need the inverse of V

1
. o+u (1) 0
— o
Vo= (y+u) (o+u) i 0 : (3.29)
po 0 1
(vat+u)(y+u)(o+u) YAtH
1
(Bl B 0 o 00
FV= 0 0 0 (v+r)(o+w) Y+ (1) (3.30)
po
0 0 0/ \ mormoyrwerw 0 vam
Bl (et ritem) Bl ()
= 0 0 0 1. (3.31)

0 0 0

The dominant eigenvalue of the matrix FV—! gives the basic reproduction number Ry. We
need the dominant eigenvalue of the first row, first column:

A 1 o
w <Tf+u> <U+p.+(v+p.)(cr+u)) - (3.32)

This is the basic reproduction number for the Caputo Fractional SEIAPRW model.

3.6. Global stability of the disease-free equilibrium (DFE)

We use a Lyapunov functional approach, which is effective for fractional-order systems.
To establish global stability, we construct a Lyapunov functional V that satisfies the follow-
ing conditions:

1. Vis positive definite;
2. The fractional derivative of V along the solutions of the system is negative definite.

We propose a Lyapunov functional for the Caputo fractional model
V(t)=E(t)+I(t) +A(t). (3.33)
The Caputo fractional derivative of V(t) is
DLV (1) =“DELE (1) +5DG (1) + DG A (t) (3.34)
Substitute the model equations:

I(t) + A(t)
e Cast

CDEI(t)=(1—p)oE(t)— (vp + YR+ I(t)
“DgA (1) =poE(t)— (va+) I(t)

CDELE (t) =BS(t)
(3.35)
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Then,

CD§LV (1) =CDLE (1) + DI (1) +C DG A (t)

=) LAY (64 41— 0)0E (1)~ (e + v+ [0~ (ya +0) 1(1),
_ps() T TAM L pe)E®) — (ve 4RI — (YA+WAL)

N
(3.36)

For the DFE to be globally stable, the total derivative CDgftV(t) must be non-positive.
This can be ensured if the decay terms dominate the infection and growth terms. We
particularly need to consider the basic reproduction number Ry:

_BS”
YHu

Ro (3.37)
When Rp<1, the infection terms cannot sustain the spread of the disease, leading to
a natural decline in I(t) and A(t). Specifically, if BS(t)% (Infection terms) is
small enough and (u+po)E(t) (transition/growth terms) is balanced or outweighed by

—(y+uw)I(t) and — (ya+un)A(t) (decay terms), then the overall derivative CDgft (1)<0.

3.7. Local stability of the disease-free equilibrium state

We use the method of Linearization and the fractional Jacobian matrix.

To determine the local stability, we evaluate the Jacobian matrix at the DFE. Let’s find
the Jacobian matrix J for the system at the DFE, the Jacobian matrix is given by the
partial derivatives of the right-hand sides of the system of equations with respect to
S,E,LAV,P.R,W.

d(°DXS)  d(°DFS)  J(°DXS)  d(°DXS)  d(°DFS)  d(°DXS)  d(°DXS)  d(°DY¥S)
3s F)d 21 A 3 oP 3R oW
d(°DXE)  9(°D¥E) Qd(°DXE) 9(°DFE) 9(°DYE) d(°D¥XE) d(°DyFE)  d(°DFE)
3s JF a1 9A AV oP 9R W
9(°DFID) 9(°DFI)  9(°DYI)  9(°DFI) 9(°DfD) 9(°DfD) 9(°DyID) 9(°DFI)
35S 3t a1 A 3V opP 3R oW
(CDFA)  d(°DFA) (‘DY) d(°DFA) 9(°DFA) d(°DXA) 0d(°DFA) d(°DFA
J = 35S F)d A AV oP 3R AW
(CDXV)  d(CDFV)  d(DFI)  d(CDFV) d(°DFV)  d(°DXV) d(°DFV)  d(‘DFV
3s F)d A A AV P 3R oW
d(CDXP)  9d(°D¥P) d(°DXI) d(°DFP) d(°D¥P)  d(°DXP)  d(°D¥P)  d(°DY¥P
3s JE 1 A A oP aR oW
d(°DXR)  9(°D¥R) d(°D¥XI) d(°D¥R) d(°D¥R) d(°D¥R) J(°Dy¥R)  d(°DFR
35S JE a1 JA N P 3R oW
(CDFW)  d(‘DFW)  3(°DFI)  d(CDFW)  d(‘DFW)  d(°DFW)  d(°DEW)  d(CDFW)
3s 3t 91 A 3V opP
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evaluating the partial derivatives at the DFE,

—(m+p) 0 —% —N(fjﬁu) 0 § 0 0
0 —(0+ ) NeAD e 0 0 0
0 o —(yp +YrR+ 1 0 0 0 0 O
0 po 0 —(ya+n) 0 0 0 0
n 0 0 0 _— 0 0 0
0 0 2% 0 0 —(y+w 0 O
0 0 2% YA 0 0 —u 0
0 0 [0) 0 0 0 0 —«
(3.39)

The local stability of the DFE depends on the eigenvalues of the Jacobian matrix. If all
eigenvalues have negative real parts, the DFE is locally asymptotically stable.
The characteristics equation is obtained by solving det (J—AI) = 0.

Where A is an eigenvalue and I is the identity matrix
Solving the determinant

BA BA
—(r+p)—A 0 _NéTf\Jr”) _Nécxﬂl) 0 5 0
0 o —(yp+YR+H)—A 0 0 0 0
0 oo 0 —(ya+w—=A 0 0 0
n 0 0 0 —H—A 0 0
0 0 Y 0 0 —(v+uw—A 0
0 0 8% YA 0 0 —u—A
0 0 () 0 0 0 0
(3.40)
The eigenvalues are:
}\1: - (7T+H') s }\2: - (0"}_“) s )\3: - (Y‘Hl) /)\4: _(YA+H)/ )\5: —H, )\6: —(5+H)/
}\7: —H, }\8 = —k. .
(3.41)

All eigenvalues have negative real parts, ensuring the local stability of the disease-free
equilibrium.

Since all the eigenvalues have negative real parts, the DFE of the Caputo fractional model
is locally asymptotically stable. This means small perturbations around the DFE will decay
over time, leading the system back to the DFE, indicating that the disease will die out in
the long run if the initial infection is small.

Backward bifurcation in the varicella transmission model

We study the existence of multiple equilibria when Ry < 1 to establish the occurrence of
backward bifurcation. In particular, we compute the equilibrium equations to identifying
conditions under which a positive endemic equilibrium is present.

Endemic equilibrium
In equilibrium, all the derivatives of state variables are equal to zero. For simplicity,
we consider the force of infection term:
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A= B%. (3.42)

Substituting into (54) for I and A, we obtain:

(1—p)oE* poE*

[f=——— A" = . (3.43)
Yp+YRTH YA T H
Using these expressions, the equations for E* becomes:
S*(I* 4+ A*
gr= BT EAT) (3.44)
o+
Substituting I* and A* into (56) yields a quadratic equation for E*:
aE*? + bE* +¢ = 0. (3.45)

Where a, b and c are parameters function

Condition for backward bifurcation
Backward bifurcation occurs if the quadratic equation has two positive roots for E*
when Ry < 1. This requires:

1. The discriminant A = b —4ac > 0,
2. ¢ < 0, means one root is positive. These conditions rely on certain parameter values,
especially those associated with vaccine rate (71), recovery rate (y) and transmission

rate (f3)

4. Numerical method

For our SEIAVPRW model, we need to discretize the Caputo dfractional derivatives.
One effective method is using the Griinwald-Letnikov approximation, which can be adapted
for a numerical integration scheme like the Adams-Bashforth method. Here, we integrate
the Caputo derivative into our numerical scheme.

For a function f(t), the Caputo dfractional derivative of order « at the n-th time step
can be approximated as:

1 n
“Dfwy (1) vy D wiy(tnoi)- (4.1
k=0
where wy are the Griitnwald-Letnikov weights defined as

we= (3 )

and < ]oz > is the generalized binomial coefficient.
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The Adams-Bashforth method approximates the solution at t,, ; ; based on the previous
two steps:

3 1
Un+2:yn+1+§hf (tn+1/9n+1) _Ehf (tnr Un) . (4-2)

To combine this with the Caputo derivative, we modify the Adams-Bashforth scheme to
incorporate the dfractional terms. The modified scheme is as follows:

3 1
Un+2:yn+1+§hCD8ftf (tnt 1, Yns1) _EhCDgftf (tn,Yn). (4.3)

To start the process, we need initial conditions yo and y;, which can be computed using
an Euler method:

Y1 = Yo + hf(to, yo)- (4.4)
To applying the scheme to SEIAVPRW model, we define f(t,y) for each state variable and

apply the modified Adams-Bashforth scheme.
For example, fractional derivative of S(t):

I(T)LA(T)_ (1) S(1)+6P ()
_ dr. (4.5)
0 (t—1)

Using the modified Adams-Bashforth Scheme, the approximation becomes:

CDgS (1) =

Lt A—BS(T)
I'(1—x) J

Sn+2 = Sn+1

ol nZHw A—BSp 1 PHEARK (s P )
5 e K n+1—k N W) on+1—x n+l-k .
[ 1 ¢ In_x+An—
- Eh (h“ kZOWk(/\—BSn—knank— (7t+p) Sn_k+5Pn—k)>
(4.6)
Simplified form of 51:
n+1
w I +A
Sny2=Sny1+5 Z S(A=BSn 1k kN K () Stk F 8P 1-k)
—kTAn—
—fZ (A-BSn 4™ ()5, e8P )
4.7)
For each state variable, we apply the same approach
Sn—|—2 = Sn+1
n+1
+5 Z (tnt1-1 Sn1—k Ensi—io Int1-1 Anti—1 Vari—k, Pri—1o Rni—1, Wbk

1 & w
- E Z }T;j fS (tnfk/ Snfk/ Enfkr Insz Ansz ank/ Pnfk/ Rnsz ank)
k=0
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Eni2=En1
n+1
Py Z n—l—l—k/ Sn—l—l—k/ En+1—kz In+1—k/ An+1—k/ Vn+1—k/ Pn+1—k; Rn+1—k/ Wn—l—l—k)

-5 Z o TE(tn1, Snoi Encio Ini Anci, Vi, P, Rnoi, Wik

In+2 = In+1

n+1
+ 5 Z 1 (tnt1-1 Snt1—k Ensi—i Int1— Ant1-1 Vari—k, Prsi—1o Rni—1, Wbk
. Z tn ks Sn ks En—k/ In—k/ An—k/ VTL—k/ Pn—k/ Rn—k/ Wn—k)

An+2 = An—l—l
n+1

+t3 Z A (tn1-1 Sn1—1 Engi—1 Ini-10 Anti—1 Vari—k Prnti—1o Rnpi—, W)
1 Wk
2 T o fA(tn ke Sn—k En—ks In—k, An—k, Vn—x, Pn—k, Rn—«, Wn—k)
(4.8)
Vn+2 = Vn+1
n+1
+t3 Z v (tht1-k Sni—i BEngi—1o Invi— Anpi— Vari—k Prsi—io Rni—, W)
Y Z T 1:V thk, Sn—k En—k/ In—k, An—k, Vn—x, Pn—k, Rn—x, Wn—k)
Prio = Pnia
n+1
+t3 Z P (tnt1-1 Snt1—k BEnti— Invi— o Ani—i Var1—1o Prvi— o Rngi—16 Wi —x)
1 Wi

2 7fP(tn k/sn k/En ks In k/Anfk/ankrPnfk/Rnfk/ank)

3 Wi

z —Sfp
2 = he

+ (tn+1—kz STL—l—l—k/ En+1—k/ In—l—l—k/ An+1—k/ Vn+1—k/ Pn+1—k/ Rn+1—k/ Wn+1—k)

1o« w
—Ezhf;fk(tn Kk Sn—k, En—i, In—k, An—x, Vn—x, Pn—i, Rn—1, Wn—x)
k=0
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W2 = Wi
n+1
3 Wi
5 Z ﬁfw (tn1-1 Snt1—k Eni—i Insi— Angi-1 Vas1-1 Prgi—1o Rngi—1 W)
k=0

1o« w
—5 > hfl': fw (tn—k, Sn—k, En—i, In—1, An—x, Vn—i, Pn—ie, R, W)
k=0

This numerical scheme reflects the Caputo fractional derivative for the SEIAVPRW model
and is designed to handle the memory effect in the fractional-order dynamics of disease
spread.

5. Numerical simulation of the varicella model

This section experiments the behavior of both classical and fractional varicella model.
All computations are performed using the MATLAB R2021a package on digital computer.

900 :
—_— = 1
800 | —ca = 0.9
a = 0.8
700 —_— = 0.7
—a = 0.6
600 |
500 |
[}
400 i
300 i
200 i
1 00 s s et s e SR T
0 1 1 1 1 1
0] 20 40 60 80 100 120

t(Years)

Figure 1: The dynamics of susceptible individuals (S) compartment over time, under different values of the
fractional order parameter «.

Figure 1 shows the behavior of Susceptible people (S) when t is changing within the
framework of different values of «. The first part of the figure characterized by a sharp
decrease in the level of S corresponds to the stage of exposure, infection or vaccination of
people. It can be observed how a higher order of fractional, it means that « has influence
in the rate that the S decreases, and has a slow rate with a smaller steady state, while that
at a small order of the fraction it gives a slow rate with a higher stead state, all these show
how the history of the system exerts some influence on the present state of the epidemic
and the number of remaining susceptible.
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Figure 2: The dynamics of exposed individuals (E) over time for different fractional orders «.

Figure 2 depicts the trends of Exposed individuals (E) for different « values over time
All trends start with an initial kink followed by a downward trend, as more exposed people
become infected, asymptomatic or recoveries The rate of decline is faster for higher « and
slower for lower « levels meaning more exposure period for a smaller «. This indicates
that lower values of «, which capture the feature of memory effect, results in a longer
period that individuals take in the exposed state before progressing to other stages in the
disease progression model. The graph shows a qualitative relationship of the fractional
order « on the time variation of exposed individuals in the disease model.
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Figure 3: The dynamics of infected individuals (I) compartment over time, under different values of the
fractional order parameter o.

Figure 3, the graph represents the infected population (I) against time for different
o values. All curve raises initially and starts decreasing later on as infected cases starts
to decrease, but the position of the peak is different with different alpha values, larger «
boosts the odds earlier and larger peak while smaller « remains lower with late peak, The
long-term decay of I is lower for smaller « so the epidemic tends to sustain for small «
values leading to a prolonged epidemic but with a lower peak, highlighting the need for
sustained interventions to control the disease spread.
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Figure 4: The dynamics of asymptomatic individuals (A) compartment over time, under different values of
the fractional order parameter «.

Figure 4 illustrates the dynamics of Asymptomatic individuals (A) by time for various
«. The diagrams demonstrate the decrease in A by time though the rate of such decrease
is more rapid where « is greater. If « is decreasing, the decay is slower, which means that
asymptomatic people are present in the population for a longer time, the stronger memory
effect for small « values is pointed, where the influence of past states on the current values
is stronger. Considering the analysis of the data from the graph, the higher the « values
might correspond to the situations, when asymptomatic transmit faster, probably owing to
effective interventions, while the lower « values might reflect the necessity of monitoring
and controlling asymptomatic carriers for a longer time.
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Figure 5: The dynamics of vaccinated individuals (V) compartment over time, under different values of the
fractional order parameter o.

Figure 5 shows the behavior of Vaccinated transcripts in time for different « as it can
be observed, the initial rate of the growing number of vaccinated individuals is expressed,
and the sensitivity of this indicator to « is weak. Higher coefficient « values give a more
pronounced initial upturn of the curve, whereas lesser values of « yield a relatively slower
and continuous rise, suggesting a memory influence. In the long run the people getting
vaccinated keep on rising but at a slower and slower rate as the curve gets closer to the
maximum number of people who can be vaccinated you keep on increasing so slowly be-
cause all the vulnerable people are being vaccinated. Despite the fact there is less t cells
created from the memory effect for lower «, the final number of vaccinated persons is
higher, which reflects that memory effect makes it possible for the system to retain high
level of vaccinated persons in the long run. This is quite evident in the use of fractional cal-
culus in epidemiological modeling stressing on the need for historical data in vaccination
and public health policies.
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Figure 6: The dynamics of partially immune individuals (P) compartment over time, under different values
of the fractional order parameter «.

(6) shows the model behaviour of the Partially Immune individuals (P) over the period
of time using the numeric fractional order parameter « varying from 0.6 to 1. It depicts
that with the increase of « the number of Partially Immune individuals also increase in
starting phase of the model, that can be attributed with the fact that infected individuals
are shifting to Partially Immune state of the model from some extent of the dynamics show
the basic high rise then fall pattern but they are less steep for less steep for lower « values
as the memory increases. That is, lower values of « are associated with longer persistence
of partially immune people implying longer duration of the partially immune phase. This
effect points up to the fact that ?fractional? should be included in analysis because it intro-
duces a non-local characteristic that encodes the memory property in biological systems
and alters the long-term dynamics of the epidemics and efficiency of health care measures.
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Figure 7: The dynamics of recovered individuals (R) compartment over time, under different values of the
fractional order parameter o.

Figure (7), the graph illustrates the dynamics of Recovered individuals (R) against time
for different o values. Higher « values make the peak to be faster and have a steep decline
while lower as show that there is a gradual decrease in the recovered population. This
indicates that under stronger memory effect (lower «), individuals stay in the recovered
state longer which might be due to continuous immunity or slower rate of waning immu-
nity. The graph emphasizes the significance of fractional order when applied epidemiolog-
ical models, since this has an impact on duration and dynamics of recovered population
thus affecting overall disease dynamics as well as vulnerability to future outbreaks.
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Figure 8: The dynamics of pathogen concentration in the environment (W) over time for different fractional
orders, denoted by .

Finally, Figure 8 illustrates how the Pathogen concentration in the environment (W)
changes over time for different « values. All of these curves at first rise, reflecting an
increasing pathogen level, as a result of infected individuals being able to release some
microbial load into the populations. The peak and decay changes with «, where big «-
values have an earlier peak and faster decay. Small x-values will prolong the decrease in
population density because they are affected by memory effect which makes it possible
for pathogen levels to remain high for long period of time. This indicates that in envi-
ronments with more robust memory effects, there would be a longer-lasting presence of
pathogens, which could have implications for public health strategies that seek to control
environmental pathogen loads.

6. Discussion

For the dynamics of varicella transmission, a mathematical model was built through
classical integer-order derivatives and later reformulated using Caputo fractional deriva-
tive to more accurately describe memory effects induced by the disease. The system was
proved to be stable by convergence of equilibrium points, established by Banach Fixed-
Point Theorem for existence and uniqueness. This was followed by an investigation of
the local and global stability at both disease-free equilibrium points with implementation
of Lyapunov functional approach. These approaches suggested that the disease-free equi-
librium is globally asymptotically stable for Ry < 1, and otherwise unstable indicating
pathogen persistence. For discretization of the Caputo derivative, a Grunwald-Letnikov
method was used. In this way, the model’s ability to mirror the real-world varicella dy-
namic was greatly increased such as its latent infection stages and longer recovery periods.
Integrating the fractional derivative could thus allow the model to consider the memory
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effect, which classical models are very difficultly to reproduce. Using real-world param-
eter estimates, we demonstrated how behavior of the fractional-order model varied at
different values of « in numerical simulations (see Figures 1-8); smaller values suppress
disease spread and while a larger value enhance the disease spread.

7. Conclusion

This study utilized the Caputo fractional derivative to develop a mathematical model
for varicella transmission, demonstrating that the disease’s transmission rate considering
both severity and age under specific contexts is effectively captured using the SEIAVPRW
compartmental framework. The stability of equilibrium points was analyzed using the
Lyapunov Functional Approach, while the Banach fixed-point Theorem confirmed the ex-
istence and uniqueness of solutions. The basic reproduction number RO was identified
as a critical threshold for determining whether the disease persists or dies out. Numeri-
cal simulations across different values of the fractional-order parameter « highlighted the
advantages of fractional models over classical approaches. The findings suggest that in-
corporating Caputo fractional derivatives allows for more accurate modeling of real-world
epidemiological phenomena by accounting for memory effects and historical data. This
enhanced capability to reflect the progression of disease dynamics makes fractional mod-
els particularly valuable in public health. They provide high-fidelity forecasts that can
better inform decision-making and control strategies compared to traditional models.
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