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Abstract

Recently, kidnapping-for-ransom has become a primary and lucrative source of funding sustaining the
activities of terror groups. Considering the menace as a social epidemic, this paper presents a fractional
order mathematical model for the kidnap coinfection dynamics with recruitment and abduction occurring
simultaneously. After establishing well-posedness for the positivity and boundedness, the model’s two feasible
equilibria (kidnap-free and persistent) are globally asymptotically stable if the kidnap propagation parameter
Ry is respectively, less or bigger than unity. To minimize the menace with minimum cost of security and
implementation, optimal control strategies were formulated. It is found that anti-kidnapping efforts to witch-
hunt kidnappers (in their hideout) and rescue the abducted are found to be effective in addition to community
vigilance.
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1. Introduction

Kidnapping is a predatory crime of confinement of a person against their will, perpe-
trated for different motives such as political, ritual, ransom, fanatical or terror ideologies.
Kidnapping-for-ransom in particular has become lucrative source of funding sustaining the
activities of terror groups. A social epidemic that involve severe punishment, willingness
to kill the abducted, negotiations and ransoming the family of abducted, and extortion
of private and social capital. Latest report [1] indicates Nigeria as the epicenter of the
menace, with 2.2 million people abducted and over 2.23 trillion Naira (> $1.2 billion)
paid for ransom in one year. For nearly a decade, the country has been recording over
4,000 kidnapping cases annually, which represents 52% Africa’s cases [2]. Historically
[3], kidnapping in Nigeria can be trace back to early nineties when the armed group in
Niger-Delta (oil producing region) started taking hostage of foreign executives of oil com-
panies in a reaction to environmental pollution resulted by oil exploration. The country
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recorded [4, 5] first mass kidnapping of nearly 300 Chibok schoolgirls in 2014. And sub-
sequently, the 110 Dapchi schoolgirls [6], over 300 Kankara schoolboys [7], 42 Kagara
schoolboys [8], 300 Jangebe schoolgirls [9], 65 Abuja-Kaduna train passengers [10], 20
students and 2 staff of Geenfield university [11], 66 worshipers of Kaduna Baptists church
[12], e.t.c.

The armed bandit groups perpetrating most of the kidnapping alongside lethal vio-
lence were basically into cattle rustling over the years [5, 13], but with the possession
of sophisticated weapons (spread in Africa due to Libyan political instability) [14], they
promoted to kidnapping for ransom and imposing levies on farming communities. It is
estimated [15] that, there are over 100,000 weapons and ammunition in their posses-
sions. Presently, there are over 120 armed bandit groups (demarcated by crime juris-
dictions); with no fewer than 30 members in smaller and at most 2,000 members in
the bigger groups. Each group has well organized leadership structure with Kachalla as
general overseer taking strategic decision and coordinating other unit heads including: lo-
gistics, intelligence, informants, foot soldiers, kidnapping, cattle rustling, motorbike and
camp guards [13]. The recruitment into the groups was basically on ethnic exhortation,
'yaro shiga ka kare gidanku’- calling Fulani men to join the group to protect their fam-
ily [13, 16], but with the proliferation of the menace and the need to sustain the den’s
population, the recruitment capacity expanded to exploiting socioeconomic vulnerability
coupled with poverty, unemployment and lack of education [17]. It is also said [13] that
banking sector reform of reducing the need for traders to travel with cash which make
road block armed robbery less lucrative, made the armed robbers changed to kidnapping
for ransom.

Ransom payment (along with foodstuff, motorcycles, fuel, illicit drugs and other in-
toxicant) by the family of abducted make kidnapping lucrative revenue venture, with mul-
titude beneficiaries among politicians, traditional rulers, security agents and gold miners
accounted [15]. It is estimated [13] that between July 2022 and June 2023, the sum of
302 million Naira was paid in ransom out of 5 billion naira ($ 6.4 million) demanded [16],
while between July 2023 and June 2024 the payment escalates to 1.1 billion Naira out of
11 billion Naira demanded. However, kidnappers killed the abducted person for his fam-
ily’s failure to meet their demand within the given time frame. This prompts community
members volunteer for vigilance, thereby carrying out extrajudicial killing on kidnappers
and their informants. It is estimated [1] that 614,937 Nigerians killed in one year.

Terrorist’s ideologies spread in the same pattern as infectious diseases. In view of this,
mathematical models such as [18, 19, 20, 21, 22, 23] were developed to gain an insight
into the spread of ideologies. In the context of recurrent kidnapping epidemic, [24, 25]
constructed mathematical that account for kidnapping as well as the recruitment of sus-
ceptible. It is suggested that hard drug dealers should first be treated as the enemies of
the society, because the crime carried out under the influence of hard drugs. To curb the
recruitment of young adult into banditry, [26] developed mathematical model for ban-
ditry, and then optimized media campaign as an intervention strategy. [27] categorized
kidnapper’s population and assessed the role of informants in kidnap propagation. [28]
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modeled the menace in the sense of two strains epidemic with kidnapping propagation
as one strain and adoption of abducted as other strain. It’s found that atmost one strain
invade the population if one the kidnap propagation numbers €; , is less than unity, while
the two strains coexist at endemic state when both are greater than unity.

In addition to media campaign against armed bandits and the fight for illicit drugs
as the basic control strategies, there is also need to avert ransom payment, supply of
weapons and their possessions by unauthorized individual. These can be achieve through
anti-kidnapping efforts to witch-hun kidnappers (in their hideouts) and rescue the ab-
ducted individuals. By the way, fractional order differential equation has been used to
model real world phenomena with longer traits such as Covid-19 [29], Tuberclosis (TB)
[30], Avian influenza [31], e.t.c., due to nonlocal property of fractional derivative oper-
ator that has the advantage of incorporating memory effect. In view of these, this paper
proposes fractional order mathematical model describing the kidnap coinfection dynam-
ics with community vigilance. Thereafter, optimal control intervention strategies to im-
plement the aforementioned measures were formulated. However, in the sequel chapter
two gives preliminaries on fractional calculus, and then followed by model formulation
and the analyses in chapter three. Chapter four is the formulation of optimal control
and its characterization. While Chapter five is the numerical simulation, conclusion and
recommendation.

2. Preliminaries

Definition 2.1. (Left Rieman-Liouville Fractional Integral) [32]: The left R-L fractional
integral I, of order o« > 0, and lower limit a of a function x € LY(I,R) is defined by

1 t
1% Kt) = — | (t—1)* x(1)d 2.1
30 = e L( 1) Ix(1)dr @1)
Definition 2.2. (Right Rieman-Liouville Fractional Integral) [32]: The right R-L fractional
integral I¢  of order « > 0, and upper limit b of a function x € L!(I,R) is defined by

1 b
1% X(t) = =— J (t—t)* x(1)dt (2.2)
b () Ji
Definition 2.3. (Left Rieman-Liouville Fractional Derivative) [32]: The left R-L fractional
derivative D [x] of order 0 < « < 1 and lower limit a of a function x € LY(I,R) with
IL2%XI(t) € LY(I, R) is defined by
o4 d 1—x

Da+ [x] (t) = E[Ia—'— [x]] (t) (2.3)
Definition 2.4. (Right Rieman-Liouville Fractional Derivative) [32]: The right R-L frac-
tional derivative D{r_[x] of order 0 < « < 1 and upper limit b of a function x € LY(I,R)
with I, ~*[x](t) € L}(I,R) is defined by

d

Dy_[xI(t) = —a[li,__"‘[x}](t) 2.4
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Definition 2.5. (Left Caputo Fractional Derivative) [33]: The left Caputo fractional deriva-
tive D%, [x] of order 0 < o < 1 and lower limit a of a function x € L'(I,R) is defined
by

‘D, () = ML *K(t) (2.5)

Definition 2.6. (Right Caputo Fractional Derivative) [33]: The right Caputo fractional
derivative “Dg [x] of order 0 < « < 1 and upper limit b of a function x € L!(I,R) is
defined by

Dy K(t) =~y *xN(t) (2.6)

Remark 2.7. For [x —x(a)] € ACZ, (I,R) and [x —x(b)] € ACF_(I,R) , the following
relation hold

D, K(t) =Dy, x—x(a)l(t) 2.7)
“DY_[¥(t) = D§_[x—x(b)I(t) (2.8)

Definition 2.8. (Fractional Optimal Control) [34]: Let a < b be two real numbers. Let
m,n,j € N*, let0 < o« < 1and > « be fixed. The Caputo optimal control problem of
Bolza form is given by

minimize ®@(x(a), x(b)) + IE+F[(x,u, Jl

subject to x €. ACq, ([a,b],R™), ue L*®([a,b], R™),
DX, K(t) = f(x(t),u(t),t), (2.9)
g(x(a), x(b)) € C
u(t) e U, a.e.t € [a,b].

Theorem 2.9. (Generalized Mean Value Theorem) [35]: Suppose that x(t) € Cla, b] and
CD*x(t) € C(a, b, for 0 < « < 1, then

x(t) =x(a)+ —— “D*x(&) (t—a)%, a<&<t Vte(a b) (2.10)

Remark 2.10. If x(t) € C[0, b] and “D*x(t) € C(0, b], for 0 < « < 1. It is clear from
Theorem 2.9 thatif “D%x(t) >0, Vt € (0, b], then the function x(t) is non-decreasing
andif “D%x(t) <0, Vt € (0, b] then the function x(t) is non-increasing for all t € [0, b].

Lemma 2.11. (Laplace Transform of Caputo Derivative Operator): The Laplace transform of
Caputo fractional derivative operator for 0 < o < 1 is derived as

L{D*x(t)} = s*L{x(t)} — s*1x(0). (2.11)

Theorem 2.12. (Local Stability) [36]: The equilibrium solution x° of Caputo fractional
system
CDE(t) = f(t, x) (2.12)
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is locally asymptotically stable if all the eigenvalues A;,j = 1,2,...,n of the Jacobian matrix

[gz] , 1,7 =1,2,...,m evaluated at equilibrium x° satisfy

larg(A)| > °‘2—”,Vj, and « € (0,1). (2.13)

Theorem 2.13. (Global Stability) [37]: Let x? = 0 be an equilibrium for system (2.12) and
Q C R™ be a domain containing x° = 0. Let

V(t,x):[0,00) x Q — R (2.14)
be a continuously differentiable function such that

< V(t,x) < Wa(x), (2.15)
CD*V(t,x) < —Ws(x), Vt>0, Vxe€Q, 0<a<l. (2.16)

where W1 (x), W,(x) and W3(x) are continuous positive definite functions on Q , then x =0
is globally asymptotically stable.

Lemma 2.14. [38] Let x(t) € R be continuous and derivable function, then for any time
instant t > tg

CD*x2(t) < x(t) CD*x(t), Va € (0,1). (2.17)

Theorem 2.15. (Pontryaging Maximum Principle) [34]: Assume (x*,u*) €. ACq ([a,b],R™) X
L*°([a, b],IR™) is an optimal solution to problem (2.9). Then there exists a non-trivial couple
(p,p°), where p €. ACZ, ([a,bl,R™) (called an adjoint vector) and p° < 0, such that the
following conditions hold:

1. Fractional Hamiltonian system (extremal equations):

DY X*(L)

0
Dy_[pl(t) =0

Ha (x* (1), w*(t), p(t), p°, t) (2.18)
Hi (x* (1), w*(t), p(t), p°, ) (2.19)
for almost every t € [a, b], where the Hamiltonian H : R™ x R™ x R™ xR x [a,b] —
R associated to (2.9) is defined by

(b—t)P1

FB) F(x,u,t) (2.20)

H(X/ u/plpol t) = <P; f(xl u)>1R" +p0

for all (x,u,p,p%t) € R™ x R™ x R™ x R x [a, b]; and
2. Hamiltonian maximization condition:

u(t) € argmax,H(x*(t), u*(t),p(t),p’,t)  for ae. telab];
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3. Transversality condition on the adjoint vector: if in addition g is submersive at (x*(a), x*(b)),
then the nontrivial couple p,p° can be selected to satisfy
I%,__"‘[p](a) = —p? 0:0(x*(a),x*(b)) — 97 g(x*(a),x*(b))T x ¥ (2.21)
IL*[pl(b) = —p° 2@ (x*(a), x*(b)) + 32 g(x*(a),x*(b)) " x ¥ (2.22)

where - ¥ € Nclg(x*(a),x*(b))].

Remark 2.16. Assume that the Hamiltonian consider in theorem 2.15 is differentiable with
respect to its second variable (for example, if f and F are so). And,

1. if U is convex, then the Hamiltonian maximization condition in theorem 2.15 implies
the (weaker) nonnegative Hamiltonian gradient condition given by

( OHy(x* (1), u*(t),p(t),p% 1), v—u*(t) )gm <0, Vve Uanda.e.t e [a,b).
(2.23)
2. similarly, if U = IR™ (that is, no control constraint in problem (2.9)), then the Hamil-
tonian maximization condition in theorem 2.15 implies the (weaker) null Hamilto-
nian gradient condition given by

OHy (x* (), u*(t), p(t),p°,t) =0gm  for a.e.t € [a,b] (2.24)

3. Model Formulation

Considering kidnapper’s activities in the sense of coinfection with recruitment and
abduction occurring simultaneously as described by figure 1, the total human population
N is subdivided into vulnerable to recruitment V, susceptible to abduction S, kidnappers
K, individuals in the correctional center C and in the abducted confinement A.

pC
pﬂ/i (u+ 6K uc
I 1
6 L gy YK
v K i
us (u+82)A
(1-6)2 T ks T
s > A

TA

Figure 1: Schematic diagram of kidnap coinfection

It is assumed that new born of is human either becomes vulnerable to recruitment
or susceptible to kidnapping at rates OA and (1 — 0)A respectively. The vulnerable pop-
ulation also increases with the relapse p of individuals released from correctional center
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and decreases at natural mortality rate p. It also decreases and converts into kidnappers
subpopulation following the recruitment at rate {3;. Moreover, kidnappers subpopulation
decreases at the kidnap induced death rate 1, natural death rate pu or progression to cor-
rectional center at rate y. However, the susceptible population increases with abducted
rescued at rate T and decreases due to natural death pu and kidnappers induced death rate
2. Furthermore, the number of individuals in the abducted camp decreases due to natu-
ral death rate p and kidnappers induced death rate ,. Therefore, the kidnap coinfection
dynamic is described by nonlinear system of fractional order differential equations in the
Caputo sense:

x
CD“vzeAMp“C—%KV—u“V, (3.1)
(0.8
CD*K = %KV—(uo‘Jréf‘ +v%)K, (3.2)
CD*C = y*K — (u* + p*)C, (3.3)
(0.8
Cpx§ = (1—9)7\“+T°‘A—%K8—u“5, (3.4)
BOL
CD*A = WZKS—(u“Jrsg‘JrT“)A. (3.5)

Remark 3.1. According to [39], the fractional derivative operator “D* has a dimension
(time)~* instead of (time) ™!, so that due to dimensional analysis, on the right hand side
of (3.1) - (3.5) the unit parameters A, 31, B2, 1, p, 01, 02,7y, T must have power «.

Responding to situation by volunteer vigilante made kidnappers more sensitive while
reducing their mingling (contacts) prompting to recruitment and abduction. Different
functions have been used to incorporate reduction of contact with infection in epidemic
models such as: e™!, ﬁ, Hlﬁ, 1-— %H [40] and c(I) = ¢c; — cof(I) where f(0) =
0, f/(I) =0, lim¢_, f(I) = 1 [41, 42] because they both decrease rapidly as I increases.
Here, since the rates of recruitment 3; and abduction 3; depend on contact rate c, and
the respective probabilities p; and p;. Assume random mixing between individuals such
that ¢ = rN and define a contact factor to be a function of the number of kidnappers
7(K) = {7axz> where m is the maximum reduced contact rate due to vigilance, and a > 0
measures the efficacy of the vigilance. By substituting this rate for 3; = pic and 3, = pac,
the system (3.1) - (3.5) becomes

CDXV = OA* 4 p*C — bk V—u*v (3.6)
1+ ak? !
CD*K = bk V— (u* 4+ 8% +y*)K (3.7)
1+ aK?2 1 ’ '
CD*C = y*K — (u* + p*)C, (3.8)
CDXS = (1— 0)A* + 1*A — b K S—u*s (3.9)
14 ak?2 !
Crhx b%K x o8 x
D*A = S — (U* 4 8% +TN)A, (3.10)

14 ak?
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such that
V(0), K(0), C(0), S(0), A(0), >0,

where for convenient b; = mp; and b, = mp; .

3.1. Well-Posedness

To show the criminological feasibilty of the model, it suffices to establish positivity and
boundedness.

Theorem 3.2. The set ]Ri is positively invariant w.r.t. system (3.6) - (3.10). Furthermore,
all the solutions are confined in a bounded subset Q = {(V, K,C,S,A) e ]R§r :0<V,K,C,S,A < %}

Proof
Let (V(0),K(0),C(0),S(0),A(0)) € C[0,h] and (*D*V(0),€ D*K(0),€ D*C(0),© D*S(0),* D*A(0)) €
C(0, h] then by theorem 2.9

V(t) = V(0) + 1 CDV(T) (1)%, (3.11)
N9

K(t) = K(0) + 1 CD*K(1) ()%, (3.12)
')

C(t) = C(0) + 1 CDxC(1) ()%, (3.13)
3]

S(t) = S(0) + 1 CD*S(1) (1)%, (3.14)
')

A(t) = A(0) + r(l(x) CD*A(1) (1)*, 7€ [0,h). (3.15)

Also, the system (3.6) - (3.10) yields

CDXV(t)ly—g = OA* 4+ p*C(t) > 0, (3.16)

CD*K(t)|k—o =0, (3.17)

CDC(t)lc=o =v*K >0, (3.18)

CD%S(t)[s—o = (1 — OA* +T%A >0, (3.19)

CDA(t)|asg = DK > 0. (3.20)
1+ aK?

The remark 2.10 and (3.16) - (3.20) imply that (3.11) - (3.15) are non-decreasing. Hence,
(V, K, C, S, A) cannot escape from hyperplane V=K=C=S=A=0. Also, on each hyperplane
bounding the non-negative orthant, therefore the domain IR, i.e., is positively invariant.

For the boundedness part, apply Caputo operator to

N=V+K+C+S+A
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and substitute (3.6) - (3.10) to get

CDXN = A% — u®N — 5K — &%
< A% — U*N. (3.21)

by applying Laplace transform to (3.21) and using (2.11) gives

A% Scxfl

CIN() < s(s* +ux) pFTan nx

N(0). (3.22)

Subsequent to partial fraction and Taylor series decomposition of (1 + ;‘—:)*1 , (3.22)
becomes

A% A% 0 (_uoc)m
LN < o+ (N(O) — a) mz_osamﬂ. (3.23)

Taking the inverse Laplace transform of (3.23) yields solution in terms of Mittag-Leffler
function (series)

A% A¥\ o (—ut)*m
N(t) < o + (N(O) — u‘") mZ_OF(ocmH)' (3.24)

By asymptotic decay (refer to [32]) of Mittag-Leffler (the generalized exponential func-
tion) , the long term behaviour gives

X
limsupN(t) < —.
t—o0 25

Hence the criminological feasibility of the model.

3.2. Equilibria and Stability

By equating (3.6) - (3.10) to zero in the absence of Kidnapper (K = 0), the kidnap free
equilibrium KFE is obtained as

EO — (VO/ KO, CO, SO, AO)

It is consistent to reality that in the absence of kidnappers, no one confined in the abducted
camp. Moreover, to find kidnap propagation parameter Ry using the method of next
generation matrix [44] rewrite the kidnappers state as a sum of recruitment and transition

CD*K =F +7, (3.25)

where

F= brK \% T =—(u*¥+86F+vy¥)K
1+ak2 "’ 1 '
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Evaluating their partial derivatives (w.r.t. K) at EY gives

 BA%bY

Fo= ==

’ TOZ_H“_S%_Y(X

As in [43], the kidnap propation parameter Ry is define as the spectral radius p(—FoT; b,
So,
OA%bg*

Ry = : 3.26
NI TOR SRy (5:20)

However, equating (3.6) - (3.10) to zero in the presence of kidnapper (K # 0) , the
kidnap persistent equilibrium E* = (V*,K*, C*,S*, A*) is obtained as

OA™

V* — 1 K* 2
u“Rk[ + a(K*)7,
x
C* — ’YiK*’
uo(_i_ pO(
5 (1—O)AX (L™ + 85 + %) [1 + a(K*)?]
b (W + 85)K* + o (u* + 865 + %) [1 4 a(K*)2]’
. by (1 — B)AXK*
A* = ,
b (e + 85 )K* + po(pu® 4 8% 4+ %) [1 4 a(K*)?]
where
—BE+VBZ-4AC
Ki, = (3.27)
’ 2A
with

A = abA* (u* +p%),
B = R [p™ (™ +07) + u*(u™ + 07 +v*)],
C=—0A%Rx —1)(1u* + p%).

Since for Ry > 1, the descriminant

A =B?—4AC
= RELp* (™ + 8f) + u* (1 + 88 +y*)2 +40%(A%)2a (R — 1) (1™ + p)°
>0
then
. —B+VB2-4AC
K* = o7 >0

is the only feasible state. The following theorems analyze the stability of the equilibria.

Theorem 3.3. The kidnap free equilibrium is globally asymptotically stable if Ry < 1.
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Proof
In analogy with quadratic-type Lyapunov function [45], define
A(X
L: {(V,K,C,S,A) e0:0<V,KC,S,AKL u‘"} %R
by

L(V,K,C,S,A):1(V—VO+K+C+S—SO+A)2. (3.28)
2

Clearly, L is well-define positive definite i.e

L(V9, K% Y s% A% =0,
L(V,K,C,S,A) >0 elsewhere.

Moreover,

CD*L(V,K,C,S,A) == D¥(V-VO 4+ K+C+S—S"'+A) (3.29)

N[ =

By lemma 2.14
DL (V=V 4+ K+C+S—S"+ A)°D¥( V-V 4+ K+C+S—S'+A).
By the linearity of Caputo operator and using (3.6) - (3.10) gives
CDOL < (N = NOAX — u&N — 5¥K — 5&A). (3.30)
AtEY A% = p*NO
CDYL < —(N = N[N = NO) 4 68K + 6FAL
Also the boundedness established that N < ﬁ—z = N0, therefore N —NY < 0. So
‘DL <0

Hence theorem 2.13 is satisfied. On the other hand, evaluating the Jacobian Matrix of
system (3.6) - (3.10) at E? gives

— _ biOAX % 0 0
(24 ulx
0 % RTE T VLS 0 0 0
IO — 0 o _FL(X _ poc 0 0
0 _% 0 e T
by (1-0)A%
0 = = 0 0 —p*—=5f—1%

whose characteristics equation |J° — AI| = 0 yields eigenvalues :

A = _}’L“/ Ay = % - uoc_éix_‘y(xl N3 = _l'loc_ P, Ay = _FL(XI As =
—p* =05 —1%,.

Clearly, all the eigenvalues have negative real part with the exception of A,. For E? to be

stable, satisfying theorem 2.12 it is required that A, < 0, which implies —u"‘(u}‘z‘fé}\; o <1
1
or R < 1.
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Theorem 3.4. The kidnap persistent equilibrium is globally asymptotically stable if Ry > 1.

Proof
Define Lyapunov function

[0 4
L: {(V,K,C,S,A) €Q:0<V,KC,S, A< 3“} R
by
1
L(V,X,C,S,A) = E(V—v*+K—1<*+C—C*+S—S*+A—A*)2 (3.31)

clearly, L is well-define positive definite i.e

L(V*, K", C*,S*,A*) =0,
L(V,K,C,S,A) >0 elsewhere.

Moreover,
1
CDXL(V,K,C,S,A) = 5 CDXV-_V*+K—K*+C—C*+S—S*"+A—A*)? (3.32)
By lemma 2.14

DXL L (V=V*+K—K*"+C—C*+S—S*+A—A*)
xCD¥V-V*+K—K'+C—C*+S—S*+A—A*%).

By linearity of Caputo derivative operator and using (3.6) - (3.10)

CDXL < (N = N*)(A% — u®N — 5K — 5FA). (3.33)
Since N < i‘L—Z, then
CDXL < — (N = N*) (65K + 55A). (3.34)
At B,
NTR 2\ s a(K*)?] | u~4p* Y (L= O™ + 85 + 1)1 + a(K*)?] 4 boK*]
HORy ue + px b (1™ + 8% )K* + & (u® + 8% 4 t*)[1 4 a(K*)?]
S0,
N_N* < MO+ a(K*)?  p*+p* HyT e (- O)AX[(L* + 85 + %) [1 + a(K*)?] + baK*]
TS L*Ry L+ p b (1 + 8 )K* — (™ + 8% + 1) [1 4 a(K*)?]
A% PAX
S [TCT
A(X.
= E(Rk —0)

>0, for 0<0<1, Ry, > 1.
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therefore,
CD*L <0. (3.35)

Hence theorem 2.13 is satisfied. Moreover, evaluating the Jacobian Matrix of system (3.6)
- (3.10) at E* gives

“rrancp M R et e 0 0
1+ZH:*)2 tiff]?:ﬁllf((f:))zzf S e 0 0 0
"= 0 v* —u*—p* 0 0
0 p 0 S — o
0 P 0 1+l;2(]]<<**)2 *Pfx — 65‘ — %
where

_ (1-0)A%by (n* 485 +T1*) [1—a(K*)?]
P = I a(K)2(02 (0 108K + o (po+ 85 +t) 1+ a (K7 )2}
So, the characteristics equation |J* — Al = 0 yields

—boK* — (2u* + 8% 4+ 1%)[1 + a(K*)2 £ VA
21+ a(K*)2]

Aip =

and
QA3+ A2+ quA+qo =0 (3.36)

where
A = (85 + %) (1 + apK?) — baK]? + 4byK*[1 + a(K*)?] > 0,

q3 =1,
1*Ro[b1K* + pu*(1 4 a(K*)?)] 4 2b10A*a(K*)? + pu*Ro(u* + p*)[1 + a(K*)?]
- n*Ro[1 + a(K*)2] ’
RO Ro(p® 4 p*){by K* + p*[1 + a(K*)2]} + b1 OAXK* [2a(p™ 4 p*)K* + by]
qr = LoRo[L + a(K*)2] '
b1 [ (™ 4+ 8% + ™) + p& (™ 4+ 8X)K* + 3ap®(p* + 5§ +y*) (1™ + 5) (Kx)?
o= 1+ a(K*)2 '
Since

U¥Ro[b1K* + n*(1 4 a(K*)?)] +2b10A*a(K*)?
1wxRo[1 + a(K*)2]
(L 4 p%)2[b1K* + u&[1 + a(K*)2] 4+ 2a(u® 4 5% + %) (K*)2] + by p*y*K*
1+ a(K*)2

q192 — 9093 = q1

+ >0
meanwhile there is no sign change between the entries qs, 42, MZ;Z‘MLS, qo forming the
first column of Routh array [47], then by Routh-Hurtwitz stability criterion [46, 47], all
the roots of the polynomial ( 3.36) lie in the left half plane. Moreover, all the eigenvalues
Ai, i=1,...,5 have negetive real part with the exception of

_ —boKF — (2p* 4+ 8% + 1) [1 4 a(K*)? + VA
N 2[1 + a(K*)?]

AY)



B.A. Nasidi / Fract. Optml. Control of Ransom Kidnapping Epidemic 46

Therefore, for E* to be stable satisfying theorem 2.12, it is required that A, < 0, which
implies

VA < byK* 4 (2% + 65 + %) [1 + a(K*)?]

= —4{by(n* + 85K + pu(u* + 85 + )1+ a(K*)} <
e by(u® 4 8K 4 X (u® + 8§ + 1)1 4 a(K*)? >
(3.37)

<— K*>O0o0rRg >1.

4. Formulation of Optimal Control

The successful intervention strategy is one which decrease the number of infections
while minimizing the associated cost [42, 48]. Kidnappers use phone call to bargain ran-
som with abducted’s family. Meanwhile, the security tracking system can be used to find
their location and witch-hunt them in their hideout thereby rescuing the abducted to avert
ransom payment that proliferate their activities. To incorporate these with a minimum
cost of security and implementation, the time dependent control variables w;(t), u,(t) are
incorporated to the model (3.6) - (3.10) as

CD*V = OA* 4 p*C — bk V—u*v (4.1)
1+ ak? !

CD*K = bk V—[u* 4+ 87 +y*(14+w)IK (4.2)

14 ak?2 1 DI ’

CDXC =vy*(1+u)K— (u™+p*)C, (4.3)
X

CD*S = (1 —0)A® +1%(1 +up)A — 122!;(23 — s, (4.4)

CD*A = b K S — [+ 85 +1*(1 +up)]A. (4.5)
1+ aK2 2 2

where

* u(t) € [0,u1max] represents anti-kidnapping effort to witch-hunt kidnappers in
their hideout,

* up(t) € [0, upmax] represents anti-kidnapping effort to rescue abducted individuals
to avert ransom payment,

with the set of admissible control functions defined by
U ={ui(t) : uy(t) € [0,1] Lebesgue measurable,i=1,2, 0 <t < t¢}

Note that in the absence of controls u; = u; = 0, the control system (4.1) - (4.5) reduces
to kidnap coinfection system (3.1) - (3.5). In essence, the performance minimize the
kidnappers and abducted subpopulations, as well as the cost of implementation of controls
Uy, Uy, therefore the objective functional subject to (4.1) - (4.5) is defined by
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e u(t) u3(t)

B
2 TP

Jug, up) = minJ [BlK + BoA + Bg dt (4.6)

0

where B; > 0, 1 = 1,2,...,4 denote the weight parameters that balance the size of the
terms.

4.1. Existence of Control
To show the existence of control problem by the following theorem.

Theorem 4.1. There exist an optimal control u* = (uj,uy) of the system (4.1) - (4.5) such
that

J(ui, uy) = min{J(u, up) : wy,up € U}

Proof
The proof follows from the fact that since:

* The set of admissible control U = {u; : u; € [0, 1] Lebesgue measurable, i = 1,2}
is closed and convex, which implies compactness

* the control dynamics (4.1) - (4.5) is Lipschitz continous and bounded, which deter-
mines the compactness for the existence of the optimal control,

* the integrand (Lagrangian) in the objective functional

2(t) u3(t)

£ =BK+ByA+ B;,ul2 4B, 4.7)

is convex on U,

then by the hypothesis of Fillipov existence theorem [49], the control system (4.1) - (4.5)
has an optimal solution .

4.2. Characterization
To seek for optimal solution (x*,u*) to control problem (4.1) - (4.5) using theorem
2.15, define Hamltonian

04

bX*K bK
1 V—u"‘V] + P2 [ LoV — [u™ 4+ 68 +y*(1 +u1)]K}

1+ ak2

H =1py |6A% 4 p*C —
pl[e Tetc 1+ aK?

bgK

by (1 4w K — (1 + p¥)C] +pa [(1—9»“%“(1 Fu)A—

bgK ui(t) | o ui(t)
S — [u® + 8% 4+ 1¥(1 Al +B1K 4+ ByA + B3 —L By—2
+Ps [1+aK2 (™ + 03 + 1%(1 +up)] ]—i— 1K+ ByA + B3 5 + By
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where p = (p1,P2,P3, P4, P5)" is non-trivial vector. Since there is no constraint subject to
control dynamics (4.1) - (4.5), the null Hamiltonian gradient 9H, (x*(t), u*(t), p(t),p°) =

0 implies

uj(t) =min {max [O, y"‘(sz;pg,)K] , 1} , (4.9)
u; (t) = min {max [0, W] , 1} , (4.10)

while the adjoint (or extremal) equation D [p](t) = 0H; (x*(t), u*(t), p(t), p°) gives

boK

1Dy, p1(t) = — L T K2 + Ho‘} P1+ mpzl (4.11)
b*(1—ak?)V b%(1— ak?)V
tDy,p2(t) = —W 1 [1(1—|—aK2)2 —pur =8y —vy*(1 +Ul)] P2 +v*(1+w)ps
b¥(1—akK?)S  b&(1—akK?)$S
- — B 12
A+ak22 P Tagakze PRV (4.12)
tDEpa(t) = p*p1 — (1™ + p%)ps, (4.13)
bSK XK
tDpalt) = — [1 —|—2aK2 + H“} Pa+ ﬁpa 4.14)
tDEps(t) = (1 +up)py — [0 + 87 + (1 + uz)lps, (4.15)
where as, the transversality condition
DI 'pile, =0, = pilty) =0, i=1,2,...,5. (4.16)

5. Numerical Simulation

Based on the reported data [15, 13, 16, 50], the associated model paramers are es-
timated as A = 9.77 x 107°,b; = 3.1 x 1075,b, = 25x1074,8; = 341 x 107,86, =
921 x107%,y =139 x 1072, = 6.33 x 1074, u = 2.96 x 10~° . Thus the simulations are
run on Matlab using FDE12 code and the following results are obtained.

Kidnap dynamics Kidnap dynarmics
150 120

100f

Population

0 00 1000 1500 0 00 1000 1500
time time

Figure 2: Evolution of popula- Figure 3: Evolution of popula-
tion when a = 0 tion when a =103

The efficacy of community vigilance can be seen clearly from figure 2 and 3. They
are indicating that at startup of the vigilance with the efficacy (a = 0), the population
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dynamics persist as usual. However, as the vigillance progress with little efficacy (a =
10~3) reducing contact with kidnappers thereby preventing recruitment and abduction,
the kidnappers and abducted population begin to decline respctively. Moreover, figures

Evolution of Vinarabls for Dferent Values of o

Eluion of Coneetional forDifron: Values o .

Figure 4: Evolution of Vulnera-

Figure 5: Evolution of kidnapper
bles for different values of «

for different values of «

Figure 6: Evolution of correc-
tionals for different values of &

Evolution of Susceptibles for Different Values of o Evolution of Abducted for Different Values of o
120

Susceptibles S

0=09
0=08
0=07
0=06
0=05

Abducted A

120

100

—o=09
——os08
——o0=07
o086
f— ]

500 1000 1600
time time

Figure 7: Evolution of suscepti-

Figure 8: Evolution of abducted
bles for different values of o

for different values of o

4 - 8 depict the individual subpopulations for varrying fractional order (), which entails
the memory effect of fractional derivative operator. Meanwhile, at every time instant one
can determine the evolution of the dynamics to know the population changes due to the
menace. This further addressed Gottfried Leibnitz’s question to L’'Hopital in 1695 [511],

that asked what would be a differential having as its exponent a fraction for instance -42-?
atz
f—_ e
140 100 / \\\\
X 100 . 80 \\\\\\
fa / i

0
(] ED 1000 1800 (] Edl 1000 1500
time

Figure 9: Impact of witch-hunt
intervention on kidnappers pop-
ulation

Figure 10: Impact of rescue in-
tervention on Abducted popula-
tion

The impact of control interventions to witch-hunt and rescue can be seen from figure
9 and 10 respectively, as the dynamics of kidnappers and abducted confinement decline
upon implementation.
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6. Conclusion

This paper presents fractional order mathematical model describing kidnap coinfection
dynamics with recruitment and abduction occurring simultaneously. Due to the role of vol-
unteer vigilantee in reducing mingling, community vigilance was incorporated to assess
the efficacy. Subsequent to establishing well-posedness for the positivity and bounded-
ness, the two feasible equilibria (kidnap - free and persistant) of the model are found to
be globally asymptotically stable if kidnap propagation parameter Ry is respectively less or
bigger than unity. To minize the menace with a minimim cost of security and implemen-
tation, optimal control strategies to witch-hunt kidnappers (in their hideout) and rescue
the abducted are found to be effective to bring the menace to no avail.

Recommendation

Terrorist groups target young people and their ideology spread in the same pattern
as diseases. They exploit real or perceived grievances and use manipulative messages,
including through new technologies to increase their reach across borders and cultures.
Tight security watch on terror financing made them resort to kidnapping for ransom as a
source of funding to sustain their activities. In light of the findings in this research, the
following recommendations are made:

1. government should create more job opportunities to engage youth from being re-
cruited by terror sponsors,

2. community policing should be introduced in collaboration with community mem-
bers, traditional and religious leaders,

3. weapons possession by unauthorized individual is rampant, it should be collected
and decisive action should be taken on guilty of an offence,

4. there is urgent need to revive nomadic and adult literacy education system to reach
out herder’s hamlets and settlements.

5. recruitment capacity of security agencies should be multiplied with well-equipped
military hardware for counterterrorism operation,
6. in addition, incentives should be offer to frontline workers for encouragement.
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