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Abstract

Fractional calculus has gained significant attention from engineers because of its ability to generalise
the concept of derivatives to non-integer orders. This study explores the applications of fractional calculus
in engineering mathematics, particularly focusing on the analysis of periodic motion. Although extensive
research has been conducted in this domain, the proposed models and algorithms are still in their early stages
of development. This study examines the harmonic oscillator problem using a fractional derivative damping
term, which is proportional to the velocity, instead of the conventional damping term. This paper presents a
series of solutions comparing fractional-order solutions and damping ratios, not only for semi-derivatives but
also for a range of fractional orders. An association between the fractional order («) and damping ratio (1)
has been elucidated to minimise the computational duration necessary for resolving the fractional equation of
motion pertaining to a one-dimensional simple harmonic oscillator. The roots obtained using this method can
be applied to solve the simple harmonic oscillations of a mass between two springs with transverse oscillations.
This investigation’s outcomes advance our understanding of fractional harmonic oscillator behaviour and
highlight the efficacy of fractional calculus in tackling intricate engineering challenges.
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1. Introduction

Fractional calculus (FC) has garnered considerable attention owing to its elegant ex-
tension of derivatives to non-integer orders. In recent decades, the engineering commu-
nity has exhibited growing fascination with the development of various facets of fractional
calculus for diverse engineering applications.

In recent years, the field of FC, this mathematical framework expands upon traditional
calculus, incorporating fractional orders of integration and differentiation, has attracted
substantial scholarly interest owing to its capacity for modelling intricate phenomena
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across various scientific and engineering disciplines [1], [3]. This sophisticated math-
ematical framework has demonstrated its utility in a wide array of domains, including
image processing, computer vision, mechanics, and the study of nanoscale flows [1], [4],
[5].

Fractional calculus offers a novel approach for analysing and describing the behaviour
of oscillating systems in the context of periodic motion. The application of fractional cal-
culus to periodic functions presents intriguing properties and challenges. While fractional
derivatives of periodic signals defined on the entire real line maintain periodicity, causal
periodic signals lose their periodic nature under fractional differentiation [2]. This dis-
tinction highlights the importance of carefully considering domain and causality when
applying fractional operators to periodic systems. Moreover, research into fractional lin-
ear systems has revealed that sinusoidal impulse responses are exclusive to integer-order
linear systems, Examining the distinctive characteristics of fractional order systems in the
context of periodic motion investigation [2].

The integration of FC into the study of periodic motion opens new avenues for re-
search and applications. From the analysis of projectile motion using fractional differential
equations [6] to the development of fractional Euler-Lagrange equations for variational
problems [7], FC provides a robust analytical framework for investigating the intricacies
of periodic phenomena. As the field continues to evolve, the combination of fractional
calculus and periodic motion analysis promises to yield valuable insights and innovative
approaches in various scientific and engineering fields.

Extensive historical overviews of fractional calculus can be found in [17] and [14].
Significant research efforts have been dedicated to exploring damping and viscoelasticity
in dynamic systems. [16] introduced a numerical approach for resolving a fractionally
damped spring mass damper system with a single degree of freedom, examining a deriva-
tive of order 0.5 and utilising the Laguerre integral formula. A comparative analysis of
numerical methods is presented in [9]. Implementing a FC approach with a 0.5-order
derivative, in conjunction with an eigenvector decomposition technique, [10] provided a
closed-form solution to the problem. The issue was addressed using the Laplace transform
in [12], whilst [11] exclusively applied the Fourier transform with a fractional order of
0.5. [15] This study investigated the initialisation challenge associated with a system of
linear fractional-order differential equations, specifically addressing discrete values of the
fractional order of derivation. The research methodology incorporated the application of
the Mittag-Leffler function to analyse this complex mathematical problem. In order to
illustrate the gradual transition from solid to fluid state as the memory parameter ranges
from zero to one, [13] examined the relaxation functions and creep by modifying the
derivation order across a spectrum of 0.05 to 0.35. These results were expressed using
the Mittag-Leffler function. A comprehensive review and comparison of various numerical
solutions to fractional equations was provided by [8].

This study extends the analysis by exploring the implications of the alternative damp-
ing term on the behaviour of a system across a broader range of fractional orders. The
investigation also delves into the physical interpretation of the fractional derivative term
and its impact on the energy dissipation in the oscillator system. Furthermore, the es-
tablished correlation between o and 3 opens up possibilities for optimising the numerical
solution process and developing more efficient computational methods for similar frac-
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tional differential equations.

2. Definitions and Preliminaries

2.1. Periodic motion:

It is well known that a motion repeated at regular intervals is known as periodic mo-
tion. This period is the name given to these uniform gaps or cycles of motion. Frequency
represents the number of periods in one second.

2.2. Simple Harmonic motion (SHM):

Periodic motion is a specific case of SHM wherein the magnitude of the object’s equilib-
rium position is directly inversely proportional to the restoring force on the moving object.
It initiates and sustains oscillation indefinitely provided that friction or any other energy
loss is absent. [Wikipedia] In accordance with Hooke’s law, a mass experiences a linear
elastic restoring force when subjected to displacement, various SHM serve as mathemat-
ical models of motion; however, they are characterised by the oscillation of the mass in
the spring. The SHM system is called a simple harmonic oscillator (SHO). SHO cannot be
driven or dampened. It comprises a m - mass that is subject to a single force (F), which is
solely dependent on the x position and acts upon the mass in the direction of x = 0. We
know that

mx+kx =0 (2.1
5 k

w” = — (2.2)
m

Where w represents the particle’s angular velocity, and the constant component of the
spring, or its stiffness, is denoted by k.

3. Main Result

3.1. Fractional Simple Harmonic Oscillator

The general form of fractional equation of motion for one dimensional simple har-
monic oscillation is ) N
m%—i—ocb% +kx =0 (3.1
where « is non-integer and « = 0 corresponds to an undamped simple harmonic
oscillator and « = 1 corresponds to a damped simple harmonic oscillator.
Then we will start with the ansatz

x(t) = e®t (3.2)

The Solution of the fractional oscillator is reduced to the examination of the zeros of
the polynomial

abw®+2k =0
2k
w*+—=0 (3.3)
ob
We know that b
n (3.4)

C 2mw?—«
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where n is the damping ratio and the power on w was introduced for consistency of
dimensions, we get
a(2mw? *n)w® + 2k = 0

2mamw? +2k =0

k
mon—+k=0
m

k(14 on) =0
either k=0 or 1+an=0
but
k#0
S14+an=0
on = —1 (3.5)

Now we will go with the fractional equation of motion of the one dimensional simple har-
monic oscillator in its general form as follows:
d?x a%

X

Where « is a non integer and o = 0 corresponds to an undamped simple harmonic oscil-
lator. Dividing above equation by m and using

_ b
L S =
and 5
w?=—
m

and applying Laplace Transform to the equation we get:
d?x 2oy | %X 5

n—1 1
kdoc 1 kX

s2x(s) — sxg — x'(0) + 2omw?~* | s*x(s) — Z 3 pree— +w?x(s) =0
=0

s2x(s) — sxg + 2o0mw>~*[s*x(s) — ¢] + w?x(s) =0
where,
nol qa—l—ky

_ k
¢= Z § dtex—1-k
k=0

2—x

x(s)[s2 4 2o0mw? ™ *s* + w?] = sxp + 2canw?~*
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Now using the result,

an =—1
We get,
x(s)[s2 = 2> *s* + w?] = sxg — 2cw? "
sxg — 2cw?—«
xX(s) = 3 2 2
§% —2W %% + w
x(s) =x1 +x%x2
Where,
X §$Xo
! — 2w %5 4 w?
and
B —2cw?
2T 2 0t s+ a2
Now
X1 = SXo
- sz—O(SCX |:1 + 5272$§7“S“i|
o §$Xp i(—l)p wZP
= §2 —D2—xgox = [SZ_ZwZ—ocsoc]p
00 2p
$X w
= 2 22— Z(_l)p 2—«x P
s? {1_ = ] p=0 2P [1 w ‘x}
00 2p
w
=X0 Z(_l)p p+1
S )
o0 2p 0 ( 11 2—«x
w p+1)! 2w
=x0 ) (-1 g ) -
p+1 | _r)l 22—«
o s rzor(p+l )l s
00 T
(p+1)! w?P 2w (2—«)
=x0 Y (=17 r'(per 1)l 2p+D) 22—
p=0,r=0 ’
o0
(p + 1)! w2p+2rfocr
_ _1\pP T
_xopé R ) e s I e
p+1)|2r pr T(2—«)
X1 = X0 Z T| _T_|_1)|SZ PHT)—or+1
pr=
Similarly,

1)127 w?2P T (2—«)
__chZ o4 § ' p+ ) w’
T!(

B 0 —1‘—|— 1)!52 p+r)—ar+2
p,r=

' B (—DP(p+1)2"w?Pwr ) 1o v FDP(p+1)2Nw?Pwr2m)
) ’X(S) = X0 Z r!(p—r+1)!52(¥’+”*0”+1 —2cw ZO Tl(p_r+1)!52(p+r)—cxr+2
p,T=

p, =0
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By taking Laplace inverse on both sides, We get,

) = %0 Z P+1)'2T 2P r(2—o) t2(p+r)—ar
0 (p—r+1)! \/Z(p—l—r)—ocr—l—l

e Z p+1)12r 2p hT(2—x) 2(p+r)—ar+1
o0 p—r+1)! \/2(p+r)—ocr+2

t
2p+71)—ar+1

—

i (_1)p(p+1)!2rw2pw (27cx)t2(p+r)focr

—Jcw?
rp—r+DIT2(p+71)—ar+1) X0 cw

Sx(t) =

p,r=0
Here ¢ can be obtained depending on the problem to be discussed. In the above ex-
pansion we will take ¢ = xow*~! for sake of maintaining the dimensions.
The above expansion is valid for a relatively short time. But we can, using analytic con-
tinuation, prolong the validity of an equation similar to the expansion above for a long
time.

4. Convergence of above series
In the obtained series solution, if we want to check the convergence, then we just have
to check the convergence of following term:
t2(p+r)—e

o= OF 2(p4r1)—ar+1

t2p * t2rfcxr
F2(p+r)—ar+1

F2(p+r)—ar+1

t2p " tr(2—o¢)

F2p+1)*I'r(2—«)
0 B2p+1r(2—«))

th *tr(Zfoc)
F2p+1)*Tr(2—«a)

B(2p+1,7(2—a))

o0 e 4
_ Z 5(2p+1,r(2—a))*;)r(zp+1) *;rr&—a)

p,r=0

Here, in 3(2p +1,7(2 — «)) both 2p + 1 and r(2 — «) are positive.

Hence, the series
o0

2 B2p+Lr(2-w)
p,r=0

is convergent.

And

o0

= Tp+1)



Y.M. Muley et al. / An Analysis of Periodic Motion... 75

o tr(fox)
- (2 —«)

both represent a Mittag-Leffler function which is a convergent series.
So, the series obtained as a result is a convergent series.

5. Conclusion

This study demonstrates the potential of fractional calculus for analysing periodic mo-
tion and solving complex engineering problems. By examining the harmonic oscillator
problem with a fractional derivative damping term, In this study, we obtained valuable
insights into the behaviour of fractional harmonic oscillators. The established relationship
between the fractional order («) and damping ratio (1) offers a more efficient approach
for solving the fractional equation of motion for a simple one-dimensional harmonic oscil-
lator. These findings not only contribute to the advancement of engineering mathematics
but also pave the way for future applications in areas such as the analysis of transverse
oscillations in mass-spring systems. As the field of fractional calculus continues to evolve,
further research in this domain promises to yield innovative solutions and deepen our
understanding of the complex physical phenomena.
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