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Abstract

This article investigates the existence and uniqueness of solutions for a class of initial value problems
involving implicit fractional differential equations with the Riesz–Caputo fractional derivative. By employing
fixed point theorems in conjunction with the technique of measures of noncompactness, we establish key
existence and uniqueness results. Furthermore, we demonstrate that the proposed problem exhibits Ulam
stability. To support and illustrate our theoretical findings, several examples are provided.
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1. Introduction

Recently, fractional calculus has been a very useful tool in modeling of many phenom-
ena in applications and sciences, such as physics, engineering, electrochemistry, geology,
stability, controllability and signal theory, and many other fields. For more details, see
[1, 2, 3, 4, 6, 8, 15, 16, 21, 24, 25, 26, 27, 28, 30, 29] and the references therein.

There are numerous fractional derivatives, each with its own set of characteristics and
uses. The Riemann-Liouville fractional derivative, introduced in 1847, and the Caputo
derivative, created later in 1967, are two notable examples. Among the other notable
derivatives are the Hilfer derivative (2000), the Hadamard derivative (1892), and the
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Caputo-Fabrizio derivative (2015). In many instances, the current condition of a process
is determined by its past and future evolution. Stock price options, for example, depend
on forecasting future market patterns. Similarly, fractional derivatives are used to describe
the concentration of diffusion on a specific route in the anomalous diffusion problem. The
Riesz derivative, a two-sided fractional operator, is especially helpful in this situation be-
cause it can capture both past and future memory effects. This property is particularly
useful when describing fractional processes on a finite area. The Riemann-Liouville and
Caputo fractional derivatives, which are one-sided fractional operators that only reflect
past or future memory effects, are currently the center of much work on fractional differ-
ential equations. The flexibility of the Riesz derivative, on the other hand, has attracted
notice and is garnering favor in the field. For further information, interested readers may
refer to the works cited in [9, 10, 12].

In many cases, determining the exact solution of differential equations is difficult, if
not unattainable. It is usual in such situations to investigate approximate solutions. It is
essential to observe, however, that only steady approximations are accepted. As a conse-
quence, different stability analysis techniques are used. S. M. Ulam, a mathematician, first
raised the stability issue in functional equations in a 1940 lecture at Wisconsin University.
In his presentation, Ulam posed the following challenge: "Under what conditions does an
additive mapping exist near an approximately additive mapping?" [32]. The following
year, Hyers provided an answer to Ulam’s problem for additive functions defined on Ba-
nach spaces [13]. In 1978, Rassias further expanded upon Hyers’ work, demonstrating
the existence of unique linear mappings near approximate additive mappings [22]. Since
then, numerous research articles in the literature have addressed the stabilities of various
types of differential and integral equations. Interested readers may refer to [18, 28, 16]
and their respective references for further details.

The authors of [9] studied the existence of solution for the following boundary value
problem: {

RC
0 Dακy(θ) = g(θ,y(θ)), θ ∈ Θ := [0,κ],
y(0) = y0, y(κ) = yκ ,

where RC0 Dακ is a Riesz-Caputo derivative of order 0 < α ⩽ 1, g : Θ×R → R a continuous
function and y0 ∈ R. Their arguments are based on Leray-Schauder fixed point theorem,
and Schauder fixed point theorem.

In [17], Li and Wang discussed the following fractional problem:

RC
0 D

γ
1 y(t) = f(t,y(t)), t ∈ [0, 1], 0 < γ ⩽ 1,

y(0) = a, y(1) = by(η),

where RC0 D
γ
1 is the Riesz Caputo derivative, f ∈ C([0, 1]× [0,+∞), [0,+∞)), 0 < η < 1,a >

0, 0 < b < 2. They found the positive solutions by applying the technique of monotone
iterative.
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Naas et al. [20] investigated the existence and uniqueness results of the following
fractional differential equation with the Riesz-Caputo derivative:{

RC
0 DϑTκ(t) + F

(
t,κ(t), RC0 DσTκ(t)

)
= 0, t ∈ J := [0, T ],

κ(0) +κ(T) = 0, µκ′(0) + σκ′(T) = 0,

where 1 < ϑ ⩽ 2 and , 0 < σ ⩽ 1, RC0 DκT is the Riesz-Caputo fractional derivative of order
κ ∈ {ϑ,σ}, F : J×R×R → R, is a continuous function, and µ,σ are nonnegative constants
with µ > σ. The existence and uniqueness of solutions for their problem are demonstrated
with the Riesz-Caputo derivatives via Banach’s, Schaefer’s, and Krasnoselskii’s fixed point
theorems.

Existence of the solution for implicit initial value problem is one of the important topics
of fractional differential equations. In this paper, we present some existence results for the
following implicit fractional problem:

RC
0 Dακy(θ) = φ

(
θ,y(θ), RC0 Dακy(θ)

)
, θ ∈ Θ := [0,κ], (1.1)

y(0) = y0, (1.2)

where RC0 Dακ represent the Riesz-Caputo derivative of order 0 < α ⩽ 1 , φ : Θ× R × R →
R and y0 ∈ R.

We also establish the Ulam stability for the same problem but in Banach spaces. Finally,
some examples are given to illustrate the applications of the main results.

2. Preliminaries

In this section, we introduce some notations, definitions, and preliminary facts which
are used throughout this paper.

We denote by C(Θ,E) the Banach space of all continuous functions from Θ to E, with
the norm

∥ξ∥∞ = sup{∥ξ(θ)∥ : θ ∈ Θ}.

Definition 2.1 ([14]). Let α > 0. The left and right Riemann-Liouville fractional integrals
of a function φ ∈ C(Θ,E) of order α are given respectively by

0I
α
θφ(θ) =

1
Γ(α)

∫θ
0
(θ− ρ)α−1φ(ρ)dρ,

and

θI
α
κφ(θ) =

1
Γ(α)

∫κ
θ

(ρ− θ)α−1φ(ρ)dρ,

where Γ(.) is the Gamma function defined by

Γ(ω) =

∫∞
0
ρω−1e−ρdρ, ω > 0.
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Definition 2.2 ([14]). Let α > 0. The Riesz fractional integral of a function φ ∈ C(Θ,E)
of order α is defined by

0I
α
κφ(θ) =

1
Γ(α)

∫κ
0
|θ− ρ|α−1φ(ρ)dρ

= 0I
α
θφ(θ) + θI

α
κφ(θ),

where 0I
α
θ and θIακ are the left and right fractional integrals of Riemann-Liouville.

Definition 2.3 ([14]). Let α ∈ (n,n+ 1], n ∈ N0. The left and right Caputo fractional
derivatives of a function φ ∈ Cn+1(Θ,E) of order α are given respectively by

C
0 D

α
θφ(θ) =

1
Γ(n+ 1 −α)

∫θ
0
(θ− ρ)n−αφ(n+1)(ρ)dρ,

and

C
θD

α
κφ(θ) =

(−1)n+1

Γ(n+ 1 −α)

∫κ
θ

(ρ− θ)n−αφ(n+1)(ρ)dρ.

Definition 2.4 ([14]). Let α ∈ (n,n+ 1], n ∈ N0. The Riesz-Caputo fractional derivative
of a function φ ∈ Cn+1(Θ,E) of order α is given by

RC
0 Dακφ(θ) =

1
Γ(n+ 1 −α)

∫κ
0
|θ− ρ|n−αφ(n+1)(ρ)dρ

=
1
2
(C0 D

α
θφ(θ) + (−1)n+1C

θD
α
κφ(θ)),

where C0 D
α
θ is the left Caputo derivative and CθD

α
κ is the right one. If we take 0 < α ⩽ 1

and φ ∈ C(Θ,E), we obtain

RC
0 Dακφ(θ) =

1
2
(C0 D

α
θφ(θ) −

C
θ D

α
κφ(θ)).

Lemma 2.5 ([14]). If ξ ∈ Cn+1(Θ,E) and α ∈ (n,n+ 1], n ∈ N0, then we have

0I
α
θ
C
0 D

α
θξ(θ) = ξ(θ) −

n∑
k=0

ξ(k)(0)
k!

(θ− 0)k,

and

θI
α
κ
C
θD

α
κξ(θ) = (−1)n+1

[
ξ(θ) −

n∑
k=0

(−1)kξ(k)(κ)
k!

(κ − θ)k

]
.

Consequently, we may have

0I
α
κ
RC
0 Dακξ(θ) =

1
2
(0I
α
θ
C
0 D

α
θξ(θ) + (−1)n+1

θI
α
κ
C
θD

α
κξ(θ)).

In particular, if 0 < α ⩽ 1, then we obtain

0I
α
κ
RC
0 Dακξ(θ) = ξ(θ) −

1
2
(ξ(0) + ξ(κ)).
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2.1. Measure of Noncompactness
Definition 2.6 ([7]). Let Ξ be a Banach space and let ΨΞ be the family of bounded subsets
of Ξ. The Kuratowski measure of noncompactness is the map ζ : ΨΞ −→ [0,∞) defined by

ζ(χ) = inf

ε > 0 : χ ⊂
m⋃
j=1

χj,diam(χj) ⩽ ε

 ,

where χ ∈ ΨΞ.

The map ζ satisfies the following properties:

• ζ(χ) = 0 ⇔ χ is compact (χ is relatively compact).

• ζ(χ) = ζ(χ).

• χ1 ⊂ χ2 ⇒ ζ(χ1) ⩽ ζ(χ2).

• ζ(χ1 + χ2) ⩽ ζ(Ω1) + ζ(Ω2).

• ζ(cχ) = |c|ζ(χ), c ∈ .

• ζ(convχ) = ζ(χ).

Lemma 2.7 ([11]). Let Ω ⊂ C(Θ,E) be a bounded and equicontinuous set. Then

a) The function θ→ ζ(Ω(θ)) is continuous on Θ, and

ζC(Ω) =θ∈J ζ(Ω(θ)).

b) ζ

(∫κ
0
ξ(ρ)dρ : ξ ∈ Ω

)
⩽

∫κ
0
ζ(Ω(ρ))dρ, where

Ω(θ) = {ξ(θ) : ξ ∈ Ω}, θ ∈ Θ.

2.2. Some Fixed Point Theorems
Theorem 2.8 (Banach’s fixed point theorem [31]). Let E be a Banach space and H : E −→ E

a contraction, i.e. there exists k ∈ [0, 1) such that

∥H(ξ1) −H(ξ2)∥ ⩽ k∥ξ1 − ξ2∥, for all ξ1, ξ2 ∈ E.

Then H has a unique fixed point.

Theorem 2.9 (Schauder’s fixed point theorem [31]). Let E be a Banach space,D a bounded,
closed, convex subset of E, and H : D −→ D a compact and continuous map. Then H has at
least one fixed point in D.

Theorem 2.10 (Mönch’s fixed point theorem [19]). Let D be a non-empty, closed, bounded
and convex subset of a Banach space E such that 0 ∈ D and let H : D −→ D be a continuous
mapping. If the implication

Ω = convH(Ω) or Ω = H(Ω)∪ {0} ⇒ α(Ω) = 0,

holds for every subset Ω of D, then H has at least one fixed point.
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3. Existence Results

We consider the following fractional differential problem:

RC
0 Dακy(θ) = ϖ(θ), 0 < α ⩽ 1, θ ∈ Θ, (3.1)

y(0) = y0 ∈ R, (3.2)

where ϖ : Θ→ is a continuous function.

Lemma 3.1. The problem (3.1)-(3.2) has a unique solution, which is

y(θ) = y0 −
1
Γ(α)

∫κ
0
ρα−1ϖ(ρ)dρ+

1
Γ(α)

∫κ
0
|θ− ρ|α−1ϖ(ρ)dρ. (3.3)

Proof. From Definition 2.2, Definition 2.4, and Lemma 2.5, we have

0I
α
κ
RC
0 Dακy(θ) = y(θ) −

1
2
(y(0) + y(κ)),

which implies that

y(θ) =
1
2
(y(0) + y(κ)) + 0I

α
κϖ(θ),

=
1
2
(y(0) + y(κ)) +

1
Γ(α)

∫κ
0
|θ− ρ|α−1ϖ(ρ)dρ

=
1
2
(y(0) + y(κ)) +

1
Γ(α)

∫θ
0
(θ− ρ)α−1ϖ(ρ)dρ+

1
Γ(α)

∫κ
θ

(ρ− θ)α−1ϖ(ρ)dρ.

For θ = 0, we have

y(κ) = y0 −
2
Γ(α)

∫κ
0
ρα−1ϖ(ρ)dρ.

Then, the final solution is given by:

y(θ) = y0 −
1
Γ(α)

∫κ
0
ρα−1ϖ(ρ)dρ+

1
Γ(α)

∫κ
0
|θ− ρ|α−1ϖ(ρ)dρ.

Conversely, we can easly show by Lemma 2.5, that if y satisfies (3.3), then it satisfies
the equation (3.1) and the condition (3.2).

Definition 3.2. By a solution of problem (1.1)-(1.2) we mean a function y ∈ C(Θ, R) that
satisfies the equation (1.1) and the condition (1.2).

Lemma 3.3. Let φ : Θ×R×R → R be a continuous function. Then, the problem (1.1)-(1.2)
is equivalent to the following integral equation:

y(θ) = y0 −
1
Γ(α)

∫κ
0
ρα−1φ(ρ,y(ρ),ϖy(ρ))dρ+

1
Γ(α)

∫κ
0
|θ− ρ|α−1φ(ρ,y(ρ),ϖy(ρ))dρ,

where ϖy ∈ C(Θ, R) satisfies the following functional equation

ϖy(θ) = φ(θ,y(θ),ϖy(θ)).
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We are now in a position to prove the existence result of the problem (1.1)-(1.2) based
on the Banach’s contraction principle.

Let us assume the following assumptions:

(A1) The function φ : Θ× R × R → R is continuous.

(A2) There exist constants ψ1 > 0 and 0 < ψ2 < 1 such that

|φ(θ, ξ,η) −φ(θ, ξ̄, η̄)| ⩽ ψ1|ξ− ξ̄|+ψ2|η− η̄|,

for any ξ,η, ξ̄, η̄ ∈ R and θ ∈ Θ.

Theorem 3.4. Assume that the assumptions (A1)-(A2) hold. If

2ψ1κα

(1 −ψ2)Γ(α+ 1)
< 1, (3.4)

then the implicit fractional problem (1.1)-(1.2) has a unique solution on Θ.

Proof. Let us transform the problem (1.1)-(1.2) into a fixed point problem by defining the
operator ℵ : C(Θ, R) −→ C(Θ, R) by:

ℵy(θ) = y0 −
1
Γ(α)

∫κ
0
ρα−1φ(ρ,y(ρ),ϖy(ρ))dρ

+
1
Γ(α)

∫κ
0
|θ− ρ|α−1φ(ρ,y(ρ),ϖy(ρ))dρ.

Obviously, the fixed points of the operator ℵ are solutions of the problem (1.1)-(1.2).
Let y, z ∈ C(Θ, R) and θ ∈ Θ. Then, we have

|ℵy(θ) −ℵz(θ)| ⩽
1
Γ(α)

∫κ
0
ρα−1|φ(ρ,y(ρ),ϖy(ρ)) −φ(ρ, z(ρ),ϖz(ρ))|dρ

+
1
Γ(α)

∫κ
0
|θ− ρ|α−1|φ(ρ,y(ρ),ϖy(ρ)) −φ(ρ, z(ρ),ϖz(ρ))|dρ,

where
ϖy(θ) = φ(θ,y(θ),ϖy(θ)),

and
ϖz(θ) = φ(θ, z(θ),ϖz(θ)).

Then, by (A2) we find that

|ϖy(θ) −ϖz(θ)| = |φ(θ,y(θ),ϖy(θ)) −φ(θ, z(θ),ϖz(θ))|
⩽ ψ1|y(θ) − z(θ)|+ψ2|ϖy(θ) −ϖz(θ)|,

which implies

|ϖy(θ) −ϖz(θ)| ⩽
ψ1

1 −ψ2
|y(θ) − z(θ)|.



Rahou W. et al., Existence Results for Implicit FDEs with Riesz-Caputo Derivative 52

As a consequence, we get

|ℵy(θ) −ℵz(θ)| ⩽
ψ1

(1 −ψ2)Γ(α)
∥y− z∥∞

∫κ
0
ρα−1dρ

+
ψ1

(1 −ψ2)Γ(α)
∥y− z∥∞

∫κ
0
|θ− ρ|α−1dρ

⩽
2ψ1κα

(1 −ψ2)Γ(α+ 1)
∥y− z∥∞.

Thus,

∥ℵy−ℵz∥∞ ⩽
2ψ1κα

(1 −ψ2)Γ(α+ 1)
∥y− z∥∞.

Consequently, by the Banach’s contraction principle, the operator ℵ has a unique fixed
point which is solution of the problem (1.1)-(1.2).

Remark 3.5. Let us put

q1(θ) = |φ(θ, 0, 0)|, ψ1 = q∗2 , ψ2 = q∗3 .

Then, the hypothesis (A2) implies that

|φ(θ, ξ,η)| ⩽ q1(θ) + q
∗
2 |ξ|+ q

∗
3 |η|,

for θ ∈ Θ, ξ,η ∈ R and q1 ∈ C(Θ, R+), with

q∗1 =θ∈Θ q1(θ).

Theorem 3.6. Assume that the hypotheses (A1)-(A2) hold. If

2q∗2κα

(1 − q∗3)Γ(α+ 1)
< 1,

then the implicit fractional problem (1.1)-(1.2) has at least one solution.

Proof. This proof is based on the fixed point theorem of Schauder. We establish the proof
in several steps.

Step 1: The operator ℵ : C(Θ, R) −→ C(Θ, R) is continuous.
Let {yn}n∈N be a sequence such that yn −→ y in C(Θ, R). Then, for each θ ∈ Θ, we have

|ℵyn(θ) −ℵy(θ)| ⩽
1
Γ(α)

∫κ
0
ρα−1|φ(ρ,yn(ρ),ϖyn(ρ)) −φ(ρ,y(ρ),ϖy(ρ))|dρ

+
1
Γ(α)

∫κ
0
|θ− ρ|α−1|φ(ρ,yn(ρ),ϖyn(ρ)) −φ(ρ,y(ρ),ϖy(ρ))|dρ.

By (A2), we have

|ϖyn(θ) −ϖy(θ)| ⩽ ψ1|yn(θ) − y(θ)|+ψ2|ϖyn(θ) −ϖy(θ)|.
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Then,

|ϖyn(θ) −ϖy(θ)| ⩽
ψ1

1 −ψ2
|yn(θ) − y(θ)|.

Thus,

|ℵyn(θ) −ℵy(θ)| ⩽
ψ1

(1 −ψ2)Γ(α)

∫κ
0
ρα−1|yn(ρ) − y(ρ)|dρ

+
ψ1

(1 −ψ2)Γ(α)

∫κ
0
|θ− ρ|α−1|yn(ρ) − y(ρ)|dρ.

By applying the Lebesgue dominated convergence theorem, we get

|ℵyn(θ) −ℵy(θ)| −→ 0 as n −→ ∞,

which implies that

∥ℵyn −ℵy∥∞ −→ 0 as n −→ ∞,

Hence, the operator ℵ is continuous.

Let R > 0 and define the ball DR = {y ∈ C(Θ, R) : ∥y∥∞ ⩽ R}, where

R ⩾
ψ3|y0|+ 2καq∗1
ψ3 − 2καq∗2

and ψ3 := Γ(α+ 1)(1 − q∗3).

It is clear that DR is a bounded, closed and convex subset of C(Θ, R).

Step 2: ℵ(DR) ⊂ DR.
Let y ∈ DR and θ ∈ Θ, then

|ℵy(θ)| ⩽ |y0|+
1
Γ(α)

∫κ
0
ρα−1|φ(ρ,y(ρ),ϖy(ρ))|dρ

+
1
Γ(α)

∫κ
0
|θ− ρ|α−1|φ(ρ,y(ρ),ϖy(ρ))|dρ.

From hypothesis (A2), we have

|φ(θ,y(θ),ϖy(θ))| = |ϖy(θ)|

⩽ q1(θ) + q
∗
2 |y(θ)|+ q

∗
3 |ϖy(θ)|

⩽ q∗1 + q
∗
2R+ q

∗
3 |ϖy(θ)|.

Then,

|ϖy(θ)| ⩽
q∗1 + q

∗
2R

1 − q∗3
.



Rahou W. et al., Existence Results for Implicit FDEs with Riesz-Caputo Derivative 54

Finally, we obtain

|ℵy(θ)| ⩽ |y0|+

[
q∗1 + q

∗
2R

(1 − q∗3)Γ(α)

] ∫κ
0
ρα−1dρ+

[
q∗1 + q

∗
2R

(1 − q∗3)Γ(α)

] ∫κ
0
|θ− ρ|α−1dρ

⩽ |y0|+
2καq∗2R

(1 − q∗3)Γ(α+ 1)
+

2καq∗1
(1 − q∗3)Γ(α+ 1)

⩽ |y0|+
2καq∗2R
ψ3

+
2καq∗1
ψ3

⩽ R.

Hence, ℵ(DR) ⊂ DR.

Step 3: ℵ(DR) is equicontinuous.
Let θ1, θ2 ∈ Θ where θ1 < θ2 and y ∈ DR. Then,

|ℵy(θ2) −ℵy(θ1)|

=
∣∣∣ −1
Γ(α)

∫θ2

0
ρα−1φ(ρ,y(ρ),ϖy(ρ))dρ−

1
Γ(α)

∫κ
θ2

ρα−1φ(ρ,y(ρ),ϖy(ρ))dρ

+
1
Γ(α)

∫θ2

0
(θ2 − ρ)

α−1φ(ρ,y(ρ),ϖy(ρ))dρ

+
1
Γ(α)

∫κ
θ2

(ρ− θ2)
α−1φ(ρ,y(ρ),ϖy(ρ))dρ

+
1
Γ(α)

∫θ1

0
ρα−1φ(ρ,y(ρ),ϖy(ρ))dρ+

1
Γ(α)

∫κ
θ1

ρα−1φ(ρ,y(ρ),ϖy(ρ))dρ

−
1
Γ(α)

∫θ1

0
(θ1 − ρ)

α−1φ(ρ,y(ρ),ϖy(ρ))dρ

−
1
Γ(α)

∫κ
θ1

(ρ− θ1)
α−1φ(ρ,y(ρ),ϖy(ρ))dρ

∣∣∣
⩽

2
Γ(α)

∫θ2

θ1

ρα−1|φ(ρ,y(ρ),ϖy(ρ))|dρ

+
1
Γ(α)

∫θ1

0
[(θ2 − ρ)

α−1 − (θ1 − ρ)
α−1]|φ(ρ,y(ρ),ϖy(ρ))|dρ

+
1
Γ(α)

∫θ2

θ1

(θ2 − ρ)
α−1|φ(ρ,y(ρ),ϖy(ρ))|dρ

+
1
Γ(α)

∫κ
θ2

[(ρ− θ2)
α−1 − (ρ− θ1)

α−1]|φ(ρ,y(ρ),ϖy(ρ))|dρ

+
1
Γ(α)

∫θ2

θ1

(ρ− θ1)
α−1|φ(ρ,y(ρ),ϖy(ρ))|dρ
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⩽
2(q∗1 + q

∗
2R)

ψ3
(θα2 − θα1 ) +

q∗1 + q
∗
2R

ψ3
(θα2 − θα1 )

+
q∗1 + q

∗
2R

ψ3
(θ2 − θ1)

α +
q∗1 + q

∗
2R

2ψ3
[(κ − θ2)

α − (κ − θ1)
α]

+
q∗1 + q

∗
2R

ψ3
(θ2 − θ1)

α.

Then, when θ1 −→ θ2, the right-hand side of the inequality tend to zero, so we conclude
that the operator ℵ is equicontinuous. According to the three steps and the Ascoli-Arzela
theorem, we deduce that the operator ℵ has at least a fixed point which is the solution of
the problem (1.1)-(1.2).

4. Examples

Example 4.1. Consider the following implicit fractional problem:

RC
0 D

1
2
1y(θ) =

|y(θ)|+

∣∣∣∣RC0 D
1
2
1y(θ)

∣∣∣∣
9
(

1 + |y(θ)|+

∣∣∣∣RC0 D
1
2
1y(θ)

∣∣∣∣) , θ ∈ [0, 1], (4.1)

y(0) = 1. (4.2)

Set

φ(θ, ξ,η) =
|ξ|+ |η|

9(1 + |ξ|+ |η|)
, θ ∈ [0, 1], ξ,η ∈ R.

We observe that φ is a continuous function. And, for any ξ,η, ξ̄, η̄ ∈ R and θ ∈ [0, 1], we
have

|φ(θ, ξ,η) −φ(θ, ξ̄, η̄)| ⩽
1
9
[|ξ− ξ̄|+ |η− η̄|].

Then, the condition (A2) is satisfied with ψ1 = ψ2 = 1
9 . Also, we have

2ψ1κα

(1 −ψ2)Γ(α+ 1)
=

2
(9 − 1)Γ( 3

2)
< 1.

Since all the conditions of Theorem 3.4 are satisfied, then the problem (4.1)-(4.2) has a
unique solution on Θ.

Example 4.2. Consider the following implicit fractional problem:

RC
0 D

1
2
1y(θ) =

3

(
sin
√
|y(θ)|+ sin

√∣∣∣∣RC0 D
1
2
1y(θ)

∣∣∣∣
)

2(eθ+2 + 15)
, θ ∈ [0, 1], (4.3)

y(0) = 1. (4.4)
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Set

φ(θ, ξ,η) =
3
(

sin
√
|ξ|+ sin

√
|η|
)

2(eθ+2 + 15)
, θ ∈ [0, 1], ξ,η ∈ R.

It is clear that φ is continuous. For any ξ,η, ξ̄, η̄ ∈ R and θ ∈ [0, 1], we have

|φ(θ, ξ,η) −φ(θ, ξ̄, η̄)| ⩽
3

2(e2 + 15)
[|ξ− ξ̄|+ |η− η̄|].

Hence the assumption (A2) is satisfied with ψ1 = ψ2 = 3
2(e2+15) . Also, we have

2ψ1κα

(1 −ψ2)Γ(α+ 1)
=

6
(2(e2 + 15) − 3)Γ( 3

2)
< 1.

Then, the hypotheses of Theorem 3.4 are verified. Consequently the implicit fractional
problem (4.3)-(4.4) has a unique solution on Θ.

Example 4.3. Consider the following Cauchy problem:

RC
0 D

1
2
1y(θ) =

θ

25
+

|y(θ)|+

∣∣∣∣RC0 D
1
2
1y(θ)

∣∣∣∣
100eθ+6 , θ ∈ [0, 1], (4.5)

y(0) = 1. (4.6)

Set

φ(θ, ξ,η) =
θ

25
+

|ξ|+ |η|

100eθ+6 , θ ∈ [0, 1], ξ,η ∈ R.

Clearly, φ is a continuous function. For any ξ,η, ξ̄, η̄ ∈ R and θ ∈ [0, 1], we have

|φ(θ, ξ,η) −φ(θ, ξ̄, η̄)| ⩽
1

100e6 [|ξ− ξ̄|+ |η− η̄|].

Then, the condition (A2) is satisfied with ψ1 = ψ2 = 1
100e6 , also we have

|φ(θ, ξ,η)| ⩽
1
25

+
1

100eθ+6 |ξ|+
1

100eθ+6 |η|.

So q1(θ) =
1
25 , and q∗2 = q∗3 = 1

100e6 < 1.

Moreover,

2q∗2κα

(1 − q∗3)Γ(α+ 1)
=

2
(100e6 − 1)Γ( 3

2)
< 1.

It follows from Theorem 3.6 that the problem (4.5)-(4.6) has at least one solution on Θ.
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5. Implicit Fractional Problem in Banach Space

In this section, we will study a problem similar to problem (1.1)-(1.2) but in a Banach
space. Consider the following problem:

RC
0 Dγκy(θ) = φ(θ,y(θ), RC0 Dγκy(θ)), θ ∈ Θ := [0,κ], (5.1)

y(0) = y0, (5.2)

where RC0 D
γ
κ is the Riesz-Caputo derivative of order 0 < γ ⩽ 1 , φ : Θ× E× E → E,

(E, ∥.∥) is a Banach space and y0 ∈ E.

Definition 5.1. By a solution of problem (5.1)-(5.2) we mean a function y ∈ C(Θ,E) that
satisfies the equation (5.1) and the condition (5.2).

Lemma 5.2. Suppose that the function φ(θ, ξ,η) : Θ× E× E → E is continuous. Then, the
problem (5.1)-(5.2) is equivalent to

y(θ) = y0 −
1
Γ(γ)

∫κ
0
ργ−1φ(ρ,y(ρ),ϖy(ρ))dρ

+
1
Γ(γ)

∫κ
0
|θ− ρ|γ−1φ(ρ,y(ρ),ϖy(ρ))dρ. (5.3)

Let us set the following conditions:

(A3) The function φ : Θ× E× E→ E is continuous.

(A4) There exist constants ψ1 > 0 and 0 < ψ2 < 1 such that

∥φ(θ, ξ,η) −φ(θ, ξ̄, η̄)∥ ⩽ ψ1∥ξ− ξ̄∥+ψ2∥η− η̄∥,

for any ξ,η, ξ̄, η̄ ∈ E and θ ∈ Θ.

(A5) For each θ ∈ Θ and bounded sets Ω1,Ω2 ⊆ E, we have

α(φ(θ,Ω1,Ω2)) ⩽ ψ1α(Ω1) +ψ2α(Ω2).

Remark 5.3. Let us put

q1(θ) = ∥φ(θ, 0, 0)∥, ψ1 = q∗2 , ψ2 = q∗3 .

Then, condition (A4) implies that

∥φ(θ, ξ,η)∥ ⩽ q1(θ) + q
∗
2∥ξ∥+ q∗3∥η∥, (5.4)

for θ ∈ Θ, ξ,η ∈ E and q1 ∈ C(Θ, R+), with

q∗1 =θ∈Θ q1(θ).

Remark 5.4 ([5]). It is worth noting that the hypotheses (A4) and (A5) are equivalent.

Our existence result for the problem (5.1)-(5.2) is based on the concept of measures of
noncompactness and Mönch’s fixed point theorem.
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Theorem 5.5. Assume (A3)-(A4) are verified. If

2q∗2κγ

(1 − q∗3)Γ(γ+ 1)
< 1,

then the problem (5.1)-(5.2) has at least one solution.

Proof. Transform problem (5.1)-(5.2) into a fixed point problem by considering the opera-
tor ℵ : C(Θ,E) −→ C(Θ,E) by

ℵy(θ) = y0 −
1
Γ(γ)

∫κ
0
ργ−1φ(ρ,y(ρ),ϖy(ρ))dρ

+
1
Γ(γ)

∫κ
0
|θ− ρ|γ−1φ(ρ,y(ρ),ϖy(ρ))dρ.

The proof will be given in several steps.

Step 1: κ is continuous.
Let {yn}n∈N be a sequence such that yn −→ y in ∈ C(Θ,E), then for each θ ∈ Θ, we have

∥ℵyn(θ) −ℵy(θ)∥ ⩽
1
Γ(γ)

∫κ
0
ργ−1∥φ(ρ,yn(ρ),ϖyn(ρ)) −φ(ρ,y(ρ),ϖy(ρ))∥dρ

+
1
Γ(γ)

∫κ
0
|θ− ρ|γ−1∥φ(ρ,yn(ρ),ϖyn(ρ)) −φ(ρ,y(ρ),ϖy(ρ))∥dρ.

By (A4), we have

∥ϖyn(θ) −ϖy(θ)∥ ⩽ ψ1∥yn(θ) − y(θ)∥+ψ2∥ϖyn(θ) −ϖy(θ)∥.

Then,

∥ϖyn(θ) −ϖy(θ)∥ ⩽
ψ1

1 −ψ2
∥yn(θ) − y(θ)∥.

Thus, we obtain

∥ℵyn(θ) −ℵy(θ)∥ ⩽
ψ1

(1 −ψ2)Γ(γ)

∫κ
0
ργ−1∥yn(ρ) − y(ρ)∥dρ

+
ψ1

(1 −ψ2)Γ(γ)

∫κ
0
|θ− ρ|γ−1∥yn(ρ) − y(ρ)∥dρ.

By applying the Lebesgue dominated convergence theorem, we obtain

∥ℵyn(θ) −ℵy(θ)∥ −→ 0 as n −→ ∞,

which implies that

∥ℵyn −ℵy∥∞ −→ 0 as n −→ ∞.

Consequently, the operator ℵ is continuous.
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Let R > 0 and define the ball DR = {y ∈ C(Θ,E) : ∥y∥∞ ⩽ R}, where

R ⩾
ψ3∥y0∥+ 2κγq∗1
ψ3 − 2κγq∗2

and ψ3 := Γ(γ+ 1)(1 − q∗3).

Obviously DR is a bounded, closed and convex subset of C(Θ,E).

Step 2: ℵ(DR) ⊂ DR.
Let y ∈ DR and θ ∈ Θ, then

∥ℵy(θ)∥ ⩽ ∥y0∥+
1
Γ(γ)

∫κ
0
ργ−1∥φ(ρ,y(ρ),ϖy(ρ))∥dρ

+
1
Γ(γ)

∫κ
0
|θ− ρ|γ−1∥φ(ρ,y(ρ),ϖy(ρ))∥dρ.

From hypothesis (A4), we have

∥φ(θ,y(θ),ϖy(θ))∥ = ∥ϖy(θ)∥
⩽ q1(θ) + q

∗
2∥y(θ)∥+ q∗3∥ϖy(θ)∥

⩽ q∗1 + q
∗
2R+ q

∗
3∥ϖy(θ)∥.

Then,

∥ϖy(θ)∥ ⩽
q∗1 + q

∗
2R

1 − q∗3
.

Finally, we have

∥ℵy(θ)∥ ⩽ ∥y0∥+
2κγq∗1

Γ(γ+ 1)(1 − q∗3)
+

2κγq∗2R
Γ(γ+ 1)(1 − q∗3)

⩽ ∥y0∥+
2κγq∗1
ψ3

+
2κγq∗2R
ψ3

⩽ R.

As a consequence, ℵ(DR) ⊂ DR.

Step 3: ℵ(DR) is equicontinuous.
Let θ1, θ2 ∈ Θ such that θ1 < θ2 and y ∈ DR. Then

∥ℵy(θ2) −ℵy(θ1)∥

⩽
1
Γ(γ)

∫θ2

θ1

ργ−1∥φ(ρ,y(ρ),ϖy(ρ))∥dρ

+
1
Γ(γ)

∫θ1

0
[(θ2 − ρ)

γ−1 − (θ1 − ρ)
γ−1]∥φ(ρ,y(ρ),ϖy(ρ))∥dρ

+
1
Γ(γ)

∫θ2

θ1

(θ2 − ρ)
γ−1∥φ(ρ,y(ρ),ϖy(ρ))∥dρ

+
1
Γ(γ)

∫κ
θ2

[(ρ− θ2)
γ−1 − (ρ− θ1)

γ−1]∥φ(ρ,y(ρ),ϖy(ρ))∥dρ
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+
1
Γ(γ)

∫θ2

θ1

(ρ− θ1)
γ−1∥φ(ρ,y(ρ),ϖy(ρ))∥dρ

⩽
2(q∗1 + q

∗
2R)

ψ3
(θγ2 − θγ1 ) +

q∗1 + q
∗
2R

ψ3
(θγ2 − θγ1 )

+
q∗1 + q

∗
2R

ψ3
(θ2 − θ1)

γ +
q∗1 + q

∗
2R

ψ3
[(κ − θ2)

γ − (κ − θ1)
γ]

+
q∗1 + q

∗
2R

ψ3
(θ2 − θ1)

γ.

As θ1 −→ θ2, the right-hand side of the preceding inequality tend to zero, then ℵ(DR) is
equicontinuous.

Step 4: The implication of Mönch’s theorem is satisfied.
Let Ω be a subset of ℵ(DR) and b(θ) = ζ(Ω(θ)) a continuous function on Θ.
For θ ∈ Θ, and by Lemma 2.7, the function b can be given by

b(θ) = ζ(Ω(θ))

= ζ
{
ℵy(θ), y ∈ Ω

}
= ζ

{
y0 −

1
Γ(γ)

∫κ
0
ργ−1φ(ρ,y(ρ),ϖy(ρ))dρ

+
1
Γ(γ)

∫κ
0
|θ− ρ|γ−1φ(ρ,y(ρ),ϖy(ρ))dρ, y ∈ Ω

}
⩽

1
Γ(γ)

ζ

{∫κ
0
ργ−1φ(ρ,y(ρ),ϖy(ρ))dρ, y ∈ Ω

}
+

1
Γ(γ)

ζ

{∫κ
0
|θ− ρ|γ−1φ(ρ,y(ρ),ϖy(ρ))dρ, y ∈ Ω

}
⩽

1
Γ(γ)

∫κ
0
ργ−1

{
α
(
φ(ρ,y(ρ),ϖy(ρ))

)
dρ, y ∈ Ω

}
+

1
Γ(γ)

∫κ
0
|θ− ρ|γ−1

{
ζ
(
φ(ρ,y(ρ),ϖy(ρ))

)
dρ, y ∈ Ω

}
.

By condition (A5), we obtain

ζ(φ(θ,y(θ),ϖy(θ))) = ζ(ϖy(θ))

⩽ ψ1ζ(y(θ)) +ψ2ζ(ϖy(θ)).

Thus,

ζ(ϖy(θ)) ⩽
k

1 −ψ2
ζ(y(θ)).
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Then,

b(θ) = ζ(Ω(θ))

⩽
ψ1

(1 −ψ2)Γ(γ)

∫κ
0
ργ−1{ζ(y(ρ))dρ,y ∈ Ω}

+
ψ1

(1 −ψ2)Γ(γ)

∫κ
0
|θ− ρ|γ−1{ζ(y(ρ))dρ,y ∈ Ω}

⩽
2κγψ1

(1 −ψ2)Γ(γ+ 1)
ζc(Ω).

Therefore,

ζc(Ω) ⩽
2κγψ1

(1 −ψ2)Γ(γ+ 1)
ζc(Ω),

and by Remark 5.3, we have

ζc(Ω) ⩽
2q∗2κγ

(1 − q∗3)Γ(γ+ 1)
ζc(Ω),

which implies that ζc(Ω) = 0. We conclude then, that ℵ has a fixed point that is the
solution of the problem (5.1)-(5.2), according to Mönch’s fixed point theorem.

5.1. Ulam-Hyers Stability
In this section, we will establish the Ulam stability for the problem (5.1)-(5.2).

Definition 5.6 ([23]). The problem (5.1)-(5.2) is Ulam-Hyers stable if there exists a real
numberCφ > 0 such that for each ε > 0 and for each solution y ∈ C(Θ,E) of the inequality∥∥RC

0 Dγκy(θ) −φ(θ,y(θ), RC0 Dγκy(θ))
∥∥ < ε, θ ∈ Θ, (5.5)

there exists a solution ȳ ∈ C(Θ,E) of the problem (5.1)-(5.2) with

∥y(θ) − ȳ(θ))∥ < Cφε, θ ∈ Θ.

Definition 5.7 ([23]). The problem (5.1)-(5.2) is generalized Ulam-Hyers stable if there
exists ϕφ ∈ C(R+, R+), ϕφ(0) = 0 such that for each solution y ∈ C(Θ,E) of the inequal-
ity (5.5) there exists a solution ȳ ∈ C(Θ,E) of the problem (5.1)-(5.2) with

∥y(θ) − ȳ(θ))∥ < ϕφε, θ ∈ Θ.

Remark 5.8 ([23]). A function y ∈ C(Θ,E) is a solution of the inequality (5.5) if and only
if there exists a function ℓ ∈ C(Θ,E) (which depend on y) such that

1. ∥ℓ(θ)∥ ⩽ ε, θ ∈ Θ.
2. RC0 D

γ
κy(θ) = φ(θ, ξ(θ), RC0 D

γ
κy(θ)) + ℓ(θ), θ ∈ Θ.
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Lemma 5.9. The solution of the following perturbed problem

RC
0 Dγκy(θ) = φ(θ,y(θ), RC0 Dγκy(θ)) + ℓ(θ), θ ∈ Θ := [0,κ],

y(0) = y0,

is given by

y(θ) = y0 −
1
Γ(γ)

∫κ
0
ργ−1φ(ρ,y(ρ),ϖy(ρ))dρ+

1
Γ(γ)

∫κ
0
|θ− ρ|γ−1φ(ρ,y(ρ),ϖy(ρ))dρ

−
1
Γ(γ)

∫κ
0
ργ−1ℓ(ρ)dρ+

1
Γ(γ)

∫κ
0
|θ− ρ|γ−1ℓ(ρ)dρ.

Moreover, the solution satisfies the following inequality∥∥∥y(θ) − [y0 −
1
Γ(γ)

∫κ
0
ργ−1ϖy(ρ)dρ+

1
Γ(γ)

∫κ
0
|θ− ρ|γ−1ϖy(ρ)dρ

]∥∥∥
⩽ Ψε,

where θ ∈ Θ and Ψ = 2κγ
Γ(γ+1) .

Theorem 5.10. Assume that (A3)-(A4) and

2ψ1κγ

(1 −ψ2)Γ(γ+ 1)
< 1,

hold. Then the problem (5.1)-(5.2) is Ulam-Hyers stable.

Proof. Let y ∈ C(Θ,E) be a solution of the inequality (5.5) and ȳ ∈ C(Θ,E) the unique
solution of the problem (5.1)-(5.2), then

∥y(θ) − ȳ(θ)∥ =
∥∥∥y(θ) − [y0 −

1
Γ(γ)

∫κ
0
ργ−1φ(ρ, ȳ(ρ),ϖȳ(ρ))dρ

+
1
Γ(γ)

∫κ
0
|θ− ρ|γ−1φ(ρ, ȳ(ρ),ϖȳ(ρ))dρ

]∥∥∥
⩽

∥∥∥y(θ) − [y0 −
1
Γ(γ)

∫κ
0
ργ−1φ(ρ,y(ρ),ϖy(ρ))dρ

+
1
Γ(γ)

∫κ
0
|θ− ρ|γ−1φ(ρ,y(ρ),ϖy(ρ))dρ

]∥∥∥
+

1
Γ(γ)

∥
∫κ

0
ργ−1(φ(ρ,y(ρ),ϖy(ρ)) −φ(ρ, ȳ(ρ),ϖȳ(ρ)))dρ∥

+
1
Γ(γ)

∥
∫κ

0
|θ− ρ|γ−1(φ(ρ,y(ρ),ϖy(ρ)) −φ(ρ, ȳ(ρ),ϖȳ(ρ)))dρ∥.

By hypothesis (A4), we have

∥φ(ρ,y(ρ),ϖy(ρ)) −φ(ρ, ȳ(ρ),ϖȳ(ρ))∥ ⩽ ψ1∥y(θ) − ȳ(θ)∥+ψ2∥ϖy(θ) −ϖȳ(θ)∥.

Then,

∥ϖy(θ) −ϖȳ(θ)∥ ⩽
ψ1

1 −ψ2
∥y(θ) − ȳ(θ)∥.



Rahou W. et al., Existence Results for Implicit FDEs with Riesz-Caputo Derivative 63

Thus,

∥y(θ) − ȳ(θ)∥ ⩽
2κγε
Γ(γ+ 1)

+
2κγψ1

(1 −ψ2)Γ(γ+ 1)
∥y− ȳ∥

⩽ Ψε+
ψ1Ψ

1 −ψ2
∥y− ȳ∥,

which implies that

∥y− ȳ∥ ⩽
Ψε

1 − ψ1Ψ
1−ψ2

:= Cφε.

Consequently, the problem (5.1)-(5.2) is Ulam-Hyers stable.
If we take ϕφ(ε) = Cφε, ϕφ(0) = 0 then we get the generalized Ulam-Hyers stability of
the problem (5.1)-(5.2).

6. Examples

Set

E = l1 =

{
y = (y1,y2, ...,yn, ...),

∞∑
n=1

|yn| <∞}
,

where E is a Banach space with the norme ∥y∥ =

∞∑
n=1

|yn|.

Example 6.1. Consider the following Cauchy problem:

RC
0 D

1
2
1yn(θ) =

7 + |yn(θ)|+
1
2

∣∣∣∣RC0 D
1
2
1yn(θ)

∣∣∣∣
48eθ+1

(
1 + ∥y(θ)∥+

∥∥∥∥RC0 D
1
2
1y(θ)

∥∥∥∥) , for each θ ∈ [0, 1], (6.1)

yn(0) = 1. (6.2)

Set

φ(θ, ξ,η) =
7 + ∥ξ∥+ 1

2∥η∥
48eθ+1(1 + ∥ξ∥+ ∥η∥)

, θ ∈ [0, 1], ξ,η ∈ E.

Clearly, φ is a continuous function. And, for any ξ,η, ξ̄, η̄ ∈ E and θ ∈ [0, 1], we have

∥φ(θ, ξ,η) −φ(θ, ξ̄, η̄)∥ ⩽
1

48e
∥ξ− ξ̄∥+ 1

96e
∥η− η̄∥.

Then, the Assumption (A4) is satisfied by ψ1 = 1
48e and ψ2 = 1

96e . Also

∥φ(θ, ξ,η)∥ ⩽
1

48eθ+1 (7 + ∥ξ∥+ 1
2
∥η∥).

Thus, the condition (5.4) is satisfied with q1(θ) =
7

48eθ+1 and q∗2 = q∗3 = 1
96e < 1. Moreover,

2q∗2κγ

(1 − q∗3)Γ(γ+ 1)
=

2
48e

(1 − 1
96e)Γ(

3
2)
< 1.
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Since the conditions of Theorem 5.5 are satisfied, the problem (6.1)-(6.2) has at least one
solution. And, as

Ψψ1

1 −ψ2
=

2ψ1κγ

(1 −ψ2)Γ(γ+ 1)
=

2
48e

(1 − 1
96e)Γ(

3
2)
< 1,

then by Theorem 5.10, we can deduce that our problem is Ulam-Hyers stable.

Example 6.2. Consider the following Cauchy problem:

RC
0 D

1
2
1yn(θ) =

2 cos(θ) + |yn(θ)|+

∣∣∣∣RC0 D
1
2
1yn(θ)

∣∣∣∣
183e

√
θ+1

(
1 + ∥y(θ)∥+

∥∥∥∥RC0 D
1
2
1y(θ)

∥∥∥∥) , for each θ ∈ [0, 1],(6.3)

yn(0) = 1. (6.4)

Set

φ(θ, ξ,η) =
2 cos(θ) + ∥ξ∥+ ∥η∥

183e
√
θ+1(1 + ∥ξ∥+ ∥η∥)

, θ ∈ [0, 1], ξ,η ∈ E.

Clearly, φ is a continuous function. For any ξ,η, ξ̄, η̄ ∈ E and θ ∈ [0, 1], we have

∥φ(θ, ξ,η) −φ(θ, ξ̄, η̄)∥ ⩽
1

183e
[∥ξ− ξ̄∥+ ∥η− η̄∥].

Then, the hypothesis (A4) is satisfied by ψ1 = ψ2 = 1
183e . Also we have

∥φ(θ, ξ,η)∥ ⩽
1

183e
√
θ+1

(2 cos(θ) + ∥ξ∥+ ∥η∥).

So q1(θ) =
2 cos(θ)

183e
√
θ+1 and q∗2 = q∗3 = 1

183e < 1.

And as

2q∗2κγ

(1 − q∗3)Γ(γ+ 1)
=

2
183e

(1 − 1
183e)Γ(

3
2)
< 1.

Thus, by Theorem 5.5, the problem (6.3)-(6.4) has at least one solution.

Moreover,
Ψψ1

1 −ψ2
=

2ψ1κγ

(1 −ψ2)Γ(γ+ 1)
=

2
183e

(1 − 1
183e)Γ(

3
2)
< 1.

Then, Theorem 5.10 assures that our problem is Ulam-Hyers stable.
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7. Conclusion

In this paper, we have made a substantial contribution to the study of certain classes
of fractional differential equations involving the Riesz-Caputo fractional derivative. The
methodologies utilized are primarily grounded in fixed point theorems, such as those of
Schauder and Banach, as well as the technique of measure of noncompactness. We have
investigated Ulam’s stability of these problems, advancing the understanding of fractional
differential equations under various conditions. In future research, we aim to explore
additional classes of fractional differential equations and inclusions, including problems
with retarded (delayed) and advanced arguments, as well as impulsive problems, focusing
on both instantaneous and non-instantaneous impulses.
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