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Abstract

This paper introduces and investigates the properties of a new generalized class of fractional differential
and integral operators. Such newly class covers various definitions of fractional derivatives with singular
and non-singular kernels, weighted fractional derivatives with respect to another function, as well as the new
mixed fractional derivative in the sense of Caputo and Riemann-Liouville. Furthermore, the newly introduced
class includes all existing forms of fractional integrals, weighted fractional integrals and also weighted frac-
tional integrals with respect to another function, including Riemann-Liouville, Hadamard, Katugampola, and
Hattaf fractional integrals. Moreover, some fundamental properties of the new generalized class of fractional
differential and integral operators are rigorously derived.

Keywords: Fractional calculus, singular and non-singular kernels, weighted Laplace transform, weighted
fractional operator with respect to another function.
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1. Introduction

Fractional calculus is one of the fastest growing areas of research today, which is a
branch of mathematical analysis that studies the integration and differentiation of non-
integer orders. Such branch of mathematics has many applications in various fields such as
physics, engineering, signal processing, control systems and biology. In addition, fractional
calculus provides a powerful tool to model systems with memory effects or systems that
exhibit nonlocal behavior, offering a more accurate representation of many real-world
phenomena. For example, Shah and Abdeljawad [1] proposed a fractal-fractional model
for emissions of carbon dioxide (CO2) from energy sector. In [2], the authors investigated
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the dynamical behavior of rotavirus infectious disease model via piecewise modified ABC
fractional order derivative. Other recent applications of fractional derivatives have been
used in [3, 4, 5, 6].

Nowadays, there exists a large number of definitions for nonlocal fractional derivatives
that are used to model the nonlocal behaviors of many dynamical systems arising from dif-
ferent fields of science and engineering. Mainly, there are two classes of such types of non-
local fractional derivatives. The first one has a singular kernel like the Caputo fractional
derivative introduced by Caputo in 1967 [7], the Riemann-Liouville fractional derivative
[8, 9], the Hadamard fractional derivative [10, 11] and the Katugampola fractional deriva-
tive [12]. However, the second class has a non-singular kernel like the Caputo-Fabrizio
(CF) fractional derivative [13], the Atangana-Baleanu (AB) fractional derivative [14], the
weighted AB fractional derivative [15], the generalized Hattaf fractional (GHF) derivative
[16] and the weighted CF fractional derivative with respect to another function [17].

On the other hand, there are several forms of fractional integrals available in the
literature. The most popular of them are the Riemann-Liouville fractional integral [8],
the Hadamard fractional integral [18, 19] and the Katugampola fractional integral [20].
There are also other recently kinds of fractional integrals such as the GHF integral [16],
the fractional integral corresponding to the AB fractional derivative with the generalized
Mittag-Leffler function [21], the weighted AB fractional integral [15], the AB fractional in-
tegral with respect to another function [22], the AB fractional integral [14], the weighted
CF fractional integral with respect to another function [17], the CF fractional integral [13],
the fractional integral corresponding to the new mixed fractional derivative [23], the frac-
tional integrals introduced in [24, 25], the modified fractional integral [26], the weighted
Riemann-Liouville fractional integral with respect to another [27], the Riemann-Liouville
fractional integral with respect to another function [28, 29, 8], as well as the tempered
fractional integral [30, 31].

The current study aimed to introduce a new class of fractional differential and integral
operators in order to generalize all definitions of fractional and integrals cited above. Ad-
ditionally, the new introduced class aims to cover the new recent Hattaf mixed fractional
derivative introduced in [23] and also the weighted fractional derivatives and integrals
with respect to another function presented in [22, 32].

The rest of present paper is structured as follows. Section 2 introduces the new gen-
eralized class of fractional derivatives in the sense of Caputo and Riemann-Liouville, as
well as its special cases. Section 3 presents the fractional integral associated to the newly
introduced class of fractional derivatives and its particular cases. Section 4 focuses on
the fondamental properties of the newly generalized class of fractional differential and
integral operators. Finally, the conclusion is presented in Section 5.

2. The new class of fractional derivatives

This section focuses on the definition of the new generalized class of fractional deriva-
tives in the sense of Caputo and Riemann-Liouville.

Definition 2.1. Let (p,q) ∈ [0, 1]2, r,m > 0, Re(µ) > 0, σ ∈ IR, δ ∈ IR∗ and f ∈ H1(a,b).
The generalized mixed fractional derivative of the function f(t) of order p in Caputo sense



K. Hattaf / New generalized class of fractional operators 55

with the weight function w(t) and respect to another function ϕ(t) is given by

CD
p,q,r,m,µ
a,σ,δ,w,ϕf(t) =

H(p+ q− 1)
(2 − p− q)w(t)

∫t
a

(
ϕ(t)−ϕ(τ)

)µ−1
Eσ
r,µ[−λδp,q

(
ϕ(t)−ϕ(τ)

)m
](wf) ′(τ)dτ,

(2.1)
where w,ϕ ∈ C1(a,b), w,ϕ ′ > 0 on [a,b], H(.) is a normalization function such that

H(0) = H(1) = 1, λδp,q =
δ(p+ q− 1)

2 − p− q
and Eσ

r,µ(t) =

+∞∑
k=0

(σ)kt
k

k!Γ(rk+ µ)
is the generalized

Mittag-Leffler function of three parameters [33] with (σ)0 = 1 and (σ)k = σ(σ+ 1) · · · (σ+
k− 1) is the Pochhammer symbol.

Remark 2.2. Definition 2.1 covers a great number of definitions of fractional derivatives
with singular and non-singular kernels. For example,

1. When q = δ = 1 in Eq. (2.1), we have the new weighted fractional derivative with
respect to another function [32] given by

CD
p,1,r,m,µ
a,σ,1,w,ϕf(t) =

H(p)

(1 − p)w(t)

∫t
a

(
ϕ(t)−ϕ(τ)

)µ−1
Eσ
r,µ[−λ1

p,1
(
ϕ(t)−ϕ(τ)

)m
](wf) ′(τ)dτ,

where λ1
p,1 = p

1−p .
2. When q = δ = µ = σ = 1 and ϕ(t) = t in Eq. (2.1), we have the GHF derivative

[16] given by

CD
p,1,r,m,1
a,1,1,w,t f(t) =

H(p)

(1 − p)w(t)

∫t
a

E1
r,1[−λ1

p,1
(
t− τ

)m
](wf) ′(τ)dτ.

Notice that E1
r,1(t) = Er(t).

3. When r = m = p, q = δ = 1, w(t) = 1 and ϕ(t) = t in Eq. (2.1), we have the
generalized AB fractional derivative with generalized Mittag-Leffler function [21]
given by

CD
p,1,p,p,µ
a,σ,1,1,t f(t) =

H(p)

1 − p

∫t
a

(
t− τ

)µ−1
Eσ
p,µ[−λ1

p,1
(
t− τ

)p
]f ′(τ)dτ.

4. When r = m = p, q = δ = µ = σ = 1 and ϕ(t) = t, we have the weighted AB
fractional derivative [15] given by

CD
p,1,p,p,1
a,1,1,w,tf(t) =

H(p)

(1 − p)w(t)

∫t
a

E1
r,1[−λ1

p,1
(
t− τ

)p
](wf) ′(τ)dτ.

5. When r = m = p, q = δ = µ = σ = 1 and w(t) = 1, we have the AB fractional
derivative with respect to another function [22] given by

CD
p,1,p,p,1
a,1,1,1,ϕf(t) =

H(p)

1 − p

∫t
a

E1
p,1[−λ1

p,1
(
ϕ(t) −ϕ(τ)

)p
]f ′(τ)dτ.

6. When r = m = p, q = δ = µ = σ = 1, w(t) = 1 and ϕ(t) = t, we have the AB
fractional derivative [14] given by

CD
p,1,p,p,1
a,1,1,1,t f(t) =

H(p)

1 − p

∫t
a

E1
p,1[−λ1

p,1
(
t− τ

)p
]f ′(τ)dτ.
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7. When r = m = q = δ = µ = σ = 1, we have the weighted CF fractional derivative
with respect to another function [17] given by

CD
p,1,1,1,1
a,1,1,w,ϕf(t) =

H(p)

(1 − p)w(t)

∫t
a

E1
1,1[−λ1

p,1
(
ϕ(t) −ϕ(τ)

)
](wf) ′(τ)dτ.

Notice that E1
1,1(t) = exp(t).

8. When r = m = q = δ = µ = σ = 1 and w(t) = 1, we have the CF fractional
derivative with respect to another function [17] given by

CD
p,1,1,1,1
a,1,1,1,ϕf(t) =

H(p)

1 − p

∫t
a

E1
1,1[−λ1

p,1
(
ϕ(t) −ϕ(τ)

)
]f ′(τ)dτ.

9. When r = m = q = δ = µ = σ = 1, w(t) = 1 and ϕ(t) = t, we have the CF fractional
derivative [13] given by

CD
p,1,1,1,1
a,1,1,1,tf(t) =

H(p)

1 − p

∫t
a

E1
1,1[−λ1

p,1
(
t− τ

)
]f ′(τ)dτ.

10. When µ = q, σ = 1 and ϕ(t) = t, we have the Hattaf mixed fractional derivative
[23] given by

CD
p,q,r,m,q
a,1,δ,w,t f(t) =

H(p+ q− 1)
(2 − p− q)w(t)

∫t
a

(
t− τ

)q−1
E1
r,q[−λδp,q

(
t− τ

)m
](wf) ′(τ)dτ.

Notice that E1
r,q(t) = Er,q(t).

11. When µ = q = σ = 1, m = r, δ = ln(p̄) (with p̄ > 0) and ϕ(t) = t, we have the
power fractional derivative [24] given by

CD
p,1,r,r,1
a,1,ln(p̄),w,tf(t) =

H(p)

(1 − p)w(t)

∫t
a

E1
r,1[−λ

ln(p̄)
p,1 (t− τ)r](wf) ′(τ)dτ.

12. When µ = q, σ = δ = 1, m = r = p, w(t) = 1 and ϕ(t) = t, we have the fractional
derivative introduced in [25] given by

CD
p,q,p,p,q
a,1,1,1,t f(t) =

H(p+ q− 1)
2 − p− q

∫t
a

(t− τ)q−1E1
p,q[−λ1

p,q(t− τ)p]f ′(τ)dτ.

13. When µ = 2 − q, σ = δ = 1, m = r = p, w(t) = 1 and ϕ(t) = t, we have the
modified fractional derivative [26] given by

CD
p,q,p,p,2−q
a,1,1,1,t f(t) =

H(p+ q− 1)
2 − p− q

∫t
a

(t− τ)1−qE1
p,2−q[−λ1

p,q(t− τ)p]f ′(τ)dτ.

14. When µ = q = 1 − p, w(t) = 1 and ϕ(t) = t, we have the Caputo fractional
derivative [7] with singular kernel given by

CD
p,1−p,r,m,1−p
a,σ,δ,1,t f(t) =

1
Γ(1 − p)

∫t
a

(t− τ)−pf ′(τ)dτ.
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15. When µ = q = 1 − p, w(t) = 1 and ϕ(t) = ln(t), we have the Hadamard fractional
derivative [10, 11] with singular kernel given by

CD
p,1−p,r,m,1−p
a,σ,δ,1,ln(t) f(t) =

1
Γ(1 − p)

∫t
a

(
ln

t

τ

)−p
f ′(τ)dτ.

16. When µ = q = 1 − p, w(t) = 1 and ϕ(t) = tρ

ρ with ρ > 0, we have the Katugampola
fractional derivative fractional derivative [12] with singular kernel given by

CD
p,1−p,r,m,1−p

a,σ,δ,1, t
ρ

ρ

f(t) =
ρp

Γ(1 − p)

∫t
a

(
tρ − τρ

)−p
f ′(τ)dτ.

Now, we introduce the new generalized mixed fractional derivative in the Riemann-
Liouville sense.

Definition 2.3. Let (p,q) ∈ [0, 1]2, r,m > 0, Re(µ) > 0, σ ∈ IR, δ ∈ IR∗ and f ∈ H1(a,b).
The generalized mixed fractional derivative of the function f(t) of order p in Riemann-
Liouville sense with the weight function w(t) and respect to another function ϕ(t) is
given by

RD
p,q,r,m,µ
a,σ,δ,w,ϕf(t) =

H̃(p,q)
w(t)ϕ ′(t)

d

dt

∫t
a

ϕ ′(τ)
(
ϕ(t)−ϕ(τ)

)µ−1
Eσ
r,µ[−λδp,q

(
ϕ(t)−ϕ(τ)

)m
](wf)(τ)dτ,

(2.2)
where H̃(p,q) = H(p+q−1)

2−p−q .

Definition 2.3 includes all versions in the sense of Riemann-Liouville of the fractional
derivatives with singular and non-singular kernels mentioned in Remark 2.2. It also in-
cludes the Riemann-Liouville fractional derivative [8, 9] when µ = q = 1 − p, w(t) = 1
and ϕ(t) = t.

Lemma 2.4. The generalized mixed fractional derivatives in the sense of Caputo and Riemann-
Liouville can be expressed as follows:

RD
p,q,r,m,µ
a,σ,δ,w,ϕf(t) = H̃(p,q)

+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)
RI

km+µ−1
a,w,ϕ f(t),

CD
p,q,r,m,µ
a,σ,δ,w,ϕf(t) = H̃(p,q)

+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)
RI

km+µ
a,w,ϕ

(
(wf) ′

wϕ ′

)
(t),

where RIαa,w,ϕf(t) is the weighted Riemann-Liouville fractional integral of function f(t) with
respect to another ϕ(t) [27], which is given by

RIαa,w,ϕf(t) =
1

Γ(α)w(t)

∫t
a

ϕ ′(τ)
(
ϕ(t) −ϕ(τ)

)α−1
(wf)(τ)dτ. (2.3)

Proof. Since the generalized Mittag-Leffler function Eσ
r,µ(t) is a locally uniformly conver-

gent series on the entire complex plane, we have

RD
p,q,r,m,µ
a,σ,δ,w,ϕf(t) =

H̃(p,q)
w(t)ϕ ′(t)

+∞∑
k=0

(σ)k(−λδp,q)
k

k!Γ(kr+ µ)

d

dt

(
w(t) RI

km+µ
a,w,ϕ f(t)

)

= H̃(p,q)
+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)
RI

km+µ−1
a,w,ϕ f(t).
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Similarly, we have

CD
p,q,r,m,µ
a,σ,δ,w,ϕf(t) =

H̃(p,q)
w(t)

+∞∑
k=0

(σ)k(−λδp,q)
k

k!Γ(kr+ µ)

∫t
a

(
ϕ(t) −ϕ(τ)

)km+µ−1
(wf) ′(τ)dτ

= H̃(p,q)
+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)
RI

km+µ
a,w,ϕ

(
(wf) ′

wϕ ′

)
(t).

This completes the proof.

Remark 2.5. Lemma 2.4 extends the recent result presented in Proposition 3.5 of [32], it
suffices to take q = δ = 1.

As in [27], the weighted Laplace transform of the function f with respect to another
function ϕ is defined as follows:

Lw,ϕ{f(t)}(s) =

∫+∞
a

ϕ ′(t)e−s
(
ϕ(t)−ϕ(a)

)
w(t)f(t)dt. (2.4)

If w(t) = 1 and ϕ(t) = t, then (2.4) reduced to the classical Laplace transform. Also, it
follows from [27] that

Lw,ϕ{
RIαa,w,ϕf(t)}(s) = s−αLw,ϕ{f(t)}(s). (2.5)

Theorem 2.6. The weighted Laplace transforms with respect to another function ϕ of the
generalized mixed fractional derivatives are given by

Lw,ϕ{
RD

p,q,r,m,µ
a,σ,δ,w,ϕf(t)}(s) = H̃(p,q)

+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)skm+µ−1 Lw,ϕ{f(t)}(s),

Lw,ϕ{
CD

p,q,r,m,µ
a,σ,δ,w,ϕf(t)}(s) = H̃(p,q)

+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)skm+µ
[sLw,ϕ{f(t)}(s) − (wf)(a)].

Proof. According to Lemma 2.4 and (2.5), we have

Lw,ϕ{
RD

p,q,r,m,µ
a,σ,δ,w,ϕf(t)}(s) = H̃(p,q)

+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)
Lw,ϕ{

RI
km+µ−1
a,w,ϕ f(t)}(s)

= H̃(p,q)
+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)skm+µ−1 Lw,ϕ{f(t)}(s).

In addition, we have

Lw,ϕ{
CD

p,q,r,m,µ
a,σ,δ,w,ϕf(t)}

= H̃(p,q)
+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)
Lw,ϕ{

RI
km+µ
a,w,ϕ

(
(wf) ′

wϕ ′

)
}(t)

= H̃(p,q)
+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)Γ(kr+ µ)skm+µ

∫+∞
a

e−s
(
ϕ(t)−ϕ(a)

)
(wf) ′(t)dt

= H̃(p,q)
+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)skm+µ
[sLw,ϕ{f(t)}(s) − (wf)(a)].
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This ends the proof.

Theorem 2.7. The relation between both generalized mixed fractional derivatives is given by
RD

p,q,r,m,µ
a,σ,δ,w,ϕf(t) = CD

p,q,r,m,µ
a,σ,δ,w,ϕf(t)

+
H(p+ q− 1)

(
ϕ(t) −ϕ(a)

)µ−1

(2 − p− q)w(t)
Eσ
r,µ[−λδp,q

(
ϕ(t) −ϕ(a)

)m
](wf)(a).

(2.6)

Proof. We have

Lw,ϕ{
CD

p,q,r,m,µ
a,σ,δ,w,ϕf(t)}(s)

= H̃(p,q)
+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)skm+µ
[sLw,ϕ{f(t)}(s) − (wf)(a)]

= H̃(p,q)
+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)skm+µ−1 Lw,ϕ{f(t)}(s)

−H̃(p,q)
+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)skm+µ
(wf)(a)

= Lw,ϕ{
RD

p,q,r,m,µ
a,σ,δ,w,ϕf(t)}(s)

−H̃(p,q)
+∞∑
k=0

(σ)k(−λδp,q)
kΓ(km+ µ)

k!Γ(kr+ µ)skm+µ
(wf)(a)

= Lw,ϕ{
RD

p,q,r,m,µ
a,σ,δ,w,ϕf(t)}(s)

−H̃(p,q)(wf)(a)

+∞∑
k=0

(σ)k(−λδp,q)
k

k!Γ(kr+ µ)
Lw,ϕ{

(
ϕ(t) −ϕ(a)

)km+µ−1

w(t)
}(s).

By applying the inverse Laplace, we get
CD

p,q,r,m,µ
a,σ,δ,w,ϕf(t)

= RD
p,q,r,m,µ
a,σ,δ,w,ϕf(t) − H̃(p,q)(wf)(a)

+∞∑
k=0

(σ)k(−λδp,q)
k

k!Γ(kr+ µ)

(
ϕ(t) −ϕ(a)

)km+µ−1

w(t)

= RD
p,q,r,m,µ
a,σ,δ,w,ϕf(t)

−
H(p+ q− 1)

(
ϕ(t) −ϕ(a)

)µ−1

(2 − p− q)w(t)
Eσ
r,µ[−λδp,q

(
ϕ(t) −ϕ(a)

)m
](wf)(a).

Hence,
RD

p,q,r,m,µ
a,σ,δ,w,ϕf(t) = CD

p,q,r,m,µ
a,σ,δ,w,ϕf(t)

+
H(p+ q− 1)

(
ϕ(t) −ϕ(a)

)µ−1

(2 − p− q)w(t)
Eσ
r,µ[−λδp,q

(
ϕ(t) −ϕ(a)

)m
](wf)(a).

This completes the proof.
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Remark 2.8. Theorems 2.6 and 2.7 extend the recent results established in [32] for q =
δ = 1, the results in [25] for µ = q, σ = δ = 1, m = r = p, w(t) = 1 and ϕ(t) = t, the
results in [26] for µ = 2 − q, σ = δ = 1, m = r = p, w(t) = 1 and ϕ(t) = t, as well as the
results in [23] for µ = q, σ = 1 and ϕ(t) = t.

3. The new associate fractional integral

This section defines the generalized fractional integral associated to the new class of
fractional derivatives. First, we need the following lemma.

Lemma 3.1. Let (p,q) ∈ [0, 1]2, m = r > 0, Re(µ) > 0, δ ∈ IR∗ and σ ∈ IN∗. The following
fractional differential equation:

RD
p,q,r,r,µ
a,σ,δ,w,ϕy(t) = f(t), (3.1)

has a unique solution given by

y(t) =

σ∑
k=0

(σ

k

)
δk(p+ q− 1)k

(2 − p− q)k−1H(p+ q− 1)
RI

kr−µ+1
a,w,ϕ f(t). (3.2)

Proof. From (3.1) and Theorem 2.6, we have

H(p+ q− 1)
2 − p− q

+∞∑
k=0

(σ)k(−λδp,q)
k

k!skr+µ−1 Lw,ϕ{y(t)}(s) = Lw,ϕ{f(t)}(s). (3.3)

For σ = 1, (3.3) becomes

H(p+ q− 1)
2 − p− q

+∞∑
k=0

(−λδp,q)
k

skr+µ−1 Lw,ϕ{y(t)}(s) = Lw,ϕ{f(t)}(s).

Hence,

Lw,ϕ{y(t)}(s) =
2 − p− q

H(p+ q− 1)
sµ−1(1 + λδp,qs

−r)Lw,ϕ{f(t)}(s)

=
2 − p− q

H(p+ q− 1)
sµ−1Lw,ϕ{f(t)}(s) +

δ(p+ q− 1)
H(p+ q− 1)

sµ−r−1Lw,ϕ{f(t)}(s),

=
2 − p− q

H(p+ q− 1)
Lw,ϕ{

RI
1−µ
a,w,ϕf(t)}(s) +

δ(p+ q− 1)
H(p+ q− 1)

Lw,ϕ{
RI

1−µ+r
a,w,ϕ f(t)}(s).

By passage to the inverse Laplace, we obtain

y(t) =
2 − p− q

H(p+ q− 1)
RI

1−µ
a,w,ϕf(t) +

δ(p+ q− 1)
H(p+ q− 1)

RI
1+r−µ
a,w,ϕ f(t).

For σ = 2, (3.3) becomes

H(p+ q− 1)
2 − p− q

+∞∑
k=0

(k+ 1)(−λδp,q)
k

skr+µ−1 Lw,ϕ{y(t)}(s) = Lw,ϕ{f(t)}(s).
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Hence,

Lw,ϕ{y(t)}(s) =
2 − p− q

H(p+ q− 1)
sµ−1(1 + λδp,qs

−r)2Lw,ϕ{f(t)}(s),

=
2 − p− q

H(p+ q− 1)
sµ−1Lw,ϕ{f(t)}(s) +

2δ(p+ q− 1)
H(p+ q− 1)

sµ−r−1Lw,ϕ{f(t)}(s)

+
δ2(p+ q− 1)2

(2 − p− q)H(p+ q− 1)
sµ−2r−1Lw,ϕ{f(t)}(s),

=
2 − p− q

H(p+ q− 1)
Lw,ϕ{

RI
1−µ
a,w,ϕf(t)}(s) +

2δ(p+ q− 1)
H(p+ q− 1)

Lw,ϕ{
RI

1−µ+r
a,w,ϕ f(t)}(s)

+
δ2(p+ q− 1)2

(2 − p− q)H(p+ q− 1)
Lw,ϕ{

RI
1−µ+2r
a,w,ϕ f(t)}(s).

By applying the inverse Laplace transform, we have

y(t) =
2 − p− q

H(p+ q− 1)
RI

1−µ
a,w,ϕf(t) +

2δ(p+ q− 1)
H(p+ q− 1)

RI
1−µ+r
a,w,ϕ f(t)

+
δ2(p+ q− 1)2

(2 − p− q)H(p+ q− 1)
RI

1−µ+2r
a,w,ϕ f(t).

Similarly, when σ = n, we have

y(t) =

σ∑
k=0

(σ

k

)
δk(p+ q− 1)k

(2 − p− q)k−1H(p+ q− 1)
RI

kr−µ+1
a,w,ϕ f(t),

which ends the proof.

Definition 3.2. If m = r, then the fractional integral associated to the generalized mixed
fractional derivative is defined as follows

I
p,q,r,µ
a,σ,δ,w,ϕf(t) =

+∞∑
k=0

(σ

k

)
δk(p+ q− 1)k

(2 − p− q)k−1H(p+ q− 1)
RI

kr−µ+1
a,w,ϕ f(t). (3.4)

Remark 3.3. Definition 3.2 includes many forms of fractional integrals existing in the
literature. More precisely,

1. When q = δ = 1 in Eq. (3.4), we have the generalized weighted fractional integral
with respect to another function [32] given by

I
p,1,r,µ
a,σ,1,w,ϕf(t) =

+∞∑
k=0

(σ

k

)
pk

(1 − p)k−1H(p)
RI

kr−µ+1
a,w,ϕ f(t).

2. When q = δ = µ = σ = 1 and ϕ(t) = t in Eq. (3.4), we have the GHF integral [16]
given by

I
p,1,r,1
a,1,1,w,tf(t) =

1 − p

H(p)
f(t) +

p

H(p)
RIra,w,tf(t).
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3. When r = p, q = δ = 1, w(t) = 1 and ϕ(t) = t in Eq. (3.4), we have the frac-
tional integral corresponding to the generalized AB fractional derivative with the
generalized Mittag-Leffler function [21] given by

I
p,1,p,µ
a,σ,1,1,tf(t) =

+∞∑
k=0

(σ

k

)
pk

(1 − p)k−1H(p)
RI

kr−µ+1
a,1,t f(t).

4. When r = p, q = δ = σ = 1, w(t) = 1 and ϕ(t) = t, we have the fractional inte-
gral corresponding to the generalized AB fractional derivative with the generalized
Mittag-Leffler function [27] given by

I
p,1,p,µ
a,1,1,1,tf(t) =

1 − p

H(p)
f(t) +

p

H(p)
RI

p−µ+1
a,w,t f(t).

5. When r = p, q = δ = µ = σ = 1 and ϕ(t) = t in Eq. (3.4), we have the weighted AB
fractional integral [15] given by

I
p,1,p,1
a,1,1,w,tf(t) =

1 − p

H(p)
f(t) +

p

H(p)
RI

p
a,w,tf(t).

6. When r = p, q = δ = µ = σ = 1 and w(t) = 1 in Eq. (3.4), we have the AB fractional
integral with respect to another function [22] given by

I
p,1,p,1
a,1,1,1,ϕf(t) =

1 − p

H(p)
f(t) +

p

H(p)
RI

p
a,w,ϕf(t).

7. When r = p, q = δ = µ = σ = 1, w(t) = 1 and ϕ(t) = t in Eq. (3.4), we have the
AB fractional integral [14] given by

I
p,1,p,1
a,1,1,1,tf(t) =

1 − p

H(p)
f(t) +

p

H(p)
RI

p
a,1,tf(t).

8. When r = q = δ = µ = σ = 1 in Eq. (3.4), we have the weighted CF fractional
integral with respect to another function [17] given by

I
p,1,1,1
a,1,1,w,ϕf(t) =

1 − p

H(p)
f(t) +

p

H(p)

1
w(t)

∫t
a

ϕ ′(τ)w(τ)f(τ)dτ.

9. When r = q = δ = µ = σ = 1 and w(t) = 1 in Eq. (3.4), we have the CF fractional
integral with respect to another function [17] given by

I
p,1,1,1
a,1,1,1,ϕf(t) =

1 − p

H(p)
f(t) +

p

H(p)

∫t
a

ϕ ′(τ)f(τ)dτ.

10. When r = q = δ = µ = σ = 1, w(t) = 1 and ϕ(t) = t in Eq. (3.4), we have the CF
fractional derivative [13] given by

I
p,1,1,1
a,1,1,1,tf(t) =

1 − p

H(p)
f(t) +

p

H(p)

∫t
a

f(τ)dτ.
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11. When µ = q, σ = 1 and ϕ(t) = t in Eq. (3.4), we have the fractional integral
corresponding to the new mixed fractional derivative [23] given by

I
p,q,r,q
a,1,δ,w,tf(t) =

2 − p− q

H(p+ q− 1)
RI

1−q
a,w,tf(t) +

δ(p+ q− 1)
H(p+ q− 1)

RI
r−q+1
a,w,t f(t).

12. When µ = q = σ = 1, δ = ln(p̄) (with p̄ > 0) and ϕ(t) = t in Eq. (3.4), we have the
fractional integral [24] given by

I
p,1,r,1
a,1,ln(p̄),w,tf(t) =

1 − p

H(p)
f(t) +

p ln(p̄)
H(p)

RIra,w,tf(t).

13. When µ = q, σ = δ = 1, r = p, w(t) = 1 and ϕ(t) = t in Eq. (3.4), we have the
fractional integral introduced in [25] given by

I
p,q,p,q
a,1,1,1,tf(t) =

2 − p− q

H(p+ q− 1)
RI

1−q
a,1,tf(t) +

p+ q− 1
H(p+ q− 1)

RI
p−q+1
a,1,t f(t).

14. When µ = 2 − q, σ = δ = 1, r = p, w(t) = 1 and ϕ(t) = t in Eq. (3.4), we have the
modified fractional integral [26] given by

I
p,q,p,q
a,1,1,1,tf(t) =

2 − p− q

H(p+ q− 1)
RI

q−1
a,1,tf(t) +

p+ q− 1
H(p+ q− 1)

RI
p+q−1
a,1,t f(t).

15. When µ = q = 1−p in Eq. (3.4), we have the weighted Riemann-Liouville fractional
integral with respect to another [27] given by

I
p,1−p,r,1−p
a,σ,δ,w,ϕ f(t) =

1
Γ(p)w(t)

∫t
a

ϕ ′(τ)
(
ϕ(t) −ϕ(τ)

)p−1
(wf)(τ)dτ.

16. When µ = q = 1−p, w(t) = 1 and ϕ(t) = ln(t) in Eq. (3.4), we have the Hadamard
fractional integral [18, 19] given by

I
p,1−p,r,1−p
a,σ,δ,1,ln(t) f(t) =

1
Γ(p)

∫t
a

(
ln

t

τ

)p−1 f(τ)

τ
dτ.

17. When µ = q = 1 − p, w(t) = 1 and ϕ(t) = tρ

ρ with ρ > 0 in Eq. (3.4), we have the
Katugampola fractional integral [20] given by

I
p,1−p,r,1−p

a,σ,δ,1, t
ρ

ρ

f(t) =
ρ1−p

Γ(p)

∫t
a

(
tρ − τρ

)p−1 f(τ)

τ1−ρ
dτ.

18. When µ = q = 1 − p, w(t) = 1 and ϕ(t) = t in Eq. (3.4), we have the Riemann-
Liouville fractional integral [8] given by

I
p,1−p,r,1−p

a,σ,δ,1, t
ρ

ρ

f(t) =
1

Γ(p)

∫t
a

(
t− τ

)p−1
f(τ)dτ.

19. When µ = q = 1 − p and w(t) = 1 in Eq. (3.4), we have the Riemann-Liouville
fractional integral with respect to another function [28, 29, 8] given by

I
p,1−p,r,1−p
a,σ,δ,1,ϕ f(t) =

1
Γ(p)

∫t
a

ϕ ′(τ)
(
ϕ(t) −ϕ(τ)

)p−1
f(τ)dτ.

20. When µ = q = 1 − p and w(t) = eαt and ϕ(t) = t in Eq. (3.4), we have the
tempered fractional integral [30, 31] given by

I
p,1−p,r,1−p
a,σ,δ,eαt,t f(t) =

1
Γ(p)

∫t
a

(
t− τ

)p−1
e−α(t−τ)f(τ)dτ.
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4. Fundamental properties

This section presents some fundamental properties for the new generalized class of
fractional operators of differentiation and integration.

Theorem 4.1. The new generalized mixed fractional derivative and integral satisfy the the
following properties:

(i) I
p,q,r,µ
a,σ,δ,w,ϕ

(
RD

p,q,r,r,µ
a,σ,δ,w,ϕf

)
(t) = f(t).

(ii) RD
p,q,r,r,µ
a,σ,δ,w,ϕ

(
I
p,q,r,µ
a,σ,δ,w,ϕf

)
(t) = f(t).

(iii) I
p,q,r,µ
a,σ,δ,w,ϕ

(
CD

p,q,r,r,µ
a,σ,δ,w,ϕf

)
(t) = f(t) −

w(a)f(a)

w(t)
.

Proof. From (3.4), we have

I
p,q,r,µ
a,σ,δ,w,ϕ

(
RD

p,q,r,r,µ
a,σ,δ,w,ϕf

)
(t) =

+∞∑
i=0

(σ

i

)
δi(p+ q− 1)i

(2 − p− q)i−1H(p+ q− 1)
RI

ir−µ+1
a,w,ϕ

(
RD

p,q,r,r,µ
a,σ,δ,w,ϕf

)
(t).

According to Lemma 2.4, we get

I
p,q,r,µ
a,σ,δ,w,ϕ

(
RD

p,q,r,r,µ
a,σ,δ,w,ϕf

)
(t) =

+∞∑
i=0

+∞∑
k=0

(σ

i

)
δi(p+ q− 1)i(σ)k(−λδp,q)

k

(2 − p− q)ik!
RI

(i+k)r
a,w,ϕ f(t)

=

+∞∑
i=0

+∞∑
k=0

(−1)i
(σ
i

)
(σ)k(−λδp,q)

i+k

k!
RI

(i+k)r
a,w,ϕ f(t)

=

+∞∑
m=0

(−λδp,q)
m RImr

a,w,ϕf(t)

m∑
i=0

(−1)i
(σ
i

)
(σ)m−i

(m− i)!

= f(t) +

+∞∑
m=1

(−λδp,q)
m RImr

a,w,ϕf(t)

m∑
i=0

(−1)i
(σ
i

)
(σ)m−i

(m− i)!
.

Since
m∑
i=0

(−1)i
(σ
i

)
(σ)m−i

(m− i)!
= 0 (see, Lemma 3 of [34]), we deduce (i).

For (ii), we have

RD
p,q,r,r,µ
a,σ,δ,w,ϕ

(
I
p,q,r,µ
a,σ,δ,w,ϕf

)
(t) = RD

p,q,r,r,µ
a,σ,δ,w,ϕ

[ +∞∑
i=0

(σ
i

)
δi(p+ q− 1)i

(2 − p− q)i−1H(p+ q− 1)
RI

ir−µ+1
a,w,ϕ f(t)

]
=

+∞∑
k=0

+∞∑
i=0

(−1)i
(σ
i

)
(σ)k(−λδp,q)

i+k

k!
RI

(i+k)r
a,w,ϕ f(t)

=

+∞∑
m=0

(−λδp,q)
m RImr

a,w,ϕf(t)

m∑
i=0

(−1)i
(σ
i

)
(σ)m−i

(m− i)!

= f(t) +

+∞∑
m=1

(−λδp,q)
m RImr

a,w,ϕf(t)

m∑
i=0

(−1)i
(σ
i

)
(σ)m−i

(m− i)!

= f(t).
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For (iii), we have

I
p,q,r,µ
a,σ,δ,w,ϕ

(
CD

p,q,r,r,µ
a,σ,δ,w,ϕf

)
(t)

=

+∞∑
i=0

(σ

i

)
δi(p+ q− 1)i

(2 − p− q)i−1H(p+ q− 1)
RI

ir−µ+1
a,w,ϕ

(
CD

p,q,r,r,µ
a,σ,δ,w,ϕf

)
(t)

=

+∞∑
i=0

+∞∑
k=0

(σ

i

)
δi(p+ q− 1)i(σ)k(−λδp,q)

k

(2 − p− q)ik!
RI

(i+k)r+1
a,w,ϕ

(
(wf) ′

wϕ ′

)
(t)

=

+∞∑
i=0

+∞∑
k=0

(−1)i
(σ
i

)
(σ)k(−λδp,q)

i+k

k!
RI

(i+k)r+1
a,w,ϕ

(
(wf) ′

wϕ ′

)
(t)

=

+∞∑
m=0

(−λδp,q)
m RImr+1

a,w,ϕ

(
(wf) ′

wϕ ′

)
(t)

m∑
i=0

(−1)i
(σ
i

)
(σ)m−i

(m− i)!
.

Hence,

I
p,q,r,µ
a,σ,δ,w,ϕ

(
CD

p,q,r,r,µ
a,σ,δ,w,ϕf

)
(t) = RI1

a,w,ϕ

(
(wf) ′

wϕ ′

)
(t)

+

+∞∑
m=1

(−λδp,q)
m RImr+1

a,w,ϕ

(
(wf) ′

wϕ ′

)
(t)

m∑
i=0

(−1)i
(σ
i

)
(σ)m−i

(m− i)!

=
1

w(t)

∫t
a

(wf) ′(τ)dτ

= f(t) −
w(a)f(a)

w(t)
.

This completes the proof of theorem.

Clearly, (iii) of Theorem 4.1 extends the Newton-Leibniz formula established in [8] for
Caputo fractional derivative with singular kernel, in [23] for mixed fractional derivative,
and in [35] for AB fractional derivative in Caputo sence. In the fact, we have the following
result.

Corollary 4.2. The generalized mixed fractional derivative and integral satisfy the Newton-
Leibniz formula. In other words, we have

I
p,q,r,µ
a,σ,δ,1,ϕ

(
CD

p,q,r,r,µ
a,σ,δ,1,ϕf

)
(t) = f(t) − f(a). (4.1)

Obviously, CD
p,q,r,r,µ
a,σ,δ,1,ϕ(C) = 0 for all constant function f(t) = C. In addition, we have

the following result.

Corollary 4.3. Let f be a solution of the following fractional differential equation

CD
p,q,r,r,µ
a,σ,δ,1,ϕf(t) = 0. (4.2)

Then the function f is a constant function.

Proof. According to (4.1) and (4.2), we deduce that f(t) = f(a). This leads that f is a
constant function.
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Now, consider the following simple initial value problem (IVP):{
CD

p,1,2,2, 1
2

0,1,δ,et,tx(t) = e−t,
x(0) = 0.

(4.3)

By applying the generalized fractional integral to both sides of (4.3) and using Theorem
4.1 (iii), we deduce that the IVP (4.3) has a unique solution given by

x(t) =

(
2(1 − p)

H(p)
+

8pδt2

15H(p)

)√
t

π
e−t. (4.4)

For H(p) = 1 − p+
p

Γ(p)
, the impact of the parameters p and δ on the solution (4.4) is

shown in Figures 1 and 2, respectively.

Figure 1: The solution of (4.3) with δ = 0.1 for different values of p.

Figure 2: The solution of (4.3) with p = 0.1 for different values of δ.
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5. Conclusion

In this study, we have defined a new fractional derivative in the sense of Caputo and
Riemann-Liouville which generalizes numerous definitions of fractional derivatives with
singular and non-singular kernels available in the classical and recent literature of frac-
tional calculus. The corresponding fractional integral of the new generalized mixed frac-
tional derivative has been derived by means of weighted Laplace transform with respect
to another function. The novel fractional integral covers more than twenty definitions
of various types of fractional integrals. Furthermore, we have established some new im-
portant formulas and fundamental properties of such new generalized class of fractional
differential and integral operators. In particular, the Newton-Leibniz formula has been
extended to include many special cases existing in the previous studies.
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