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Abstract

This paper presents a concise study of variable-order fractional calculus using the Riemann-Liouville
approach. Specifically, we consider the Mittag-Leffler function with a single parameter as the order for both
Riemann-Liouville fractional differentiation (FD) and fractional integration (FI). The study explores the im-
pact of varying the parameter in the Mittag-Leffler (M-L) function and applies this variable-order fractional
operator to polynomial functions of different degrees. For clarity and completeness, the behavior of the
Mittag-Leffler-based Riemann-Liouville fractional calculus is examined both theoretically and graphically.
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1. Introduction

The "Fractional Calculus ( FC )" is mainly reviewed as part of applied mathemat-
ics which handles explorations along with applications of differentiations and integrations
of arbitrary order(see [1] and [2]). Thus, It is an prolongation of integer order Calcu-
lus that think of integrations as well derivatives of any complex or real order to unite
also generalizes notions of integer-order differentials and n - fold integrals. Various forms
of (FO)fractional operators have been introduced along time, like the Marchaud, Rie-
mann–Liouville, Weyl, Grünwald – Letnikov, the Caputo, or Hadamard ( FD )fractional
derivatives(see [3], [4] and [5]).

An initial methodology is the "(R - L) Riemann – Liouville ", which is based
on repeating the Classical Integral Operator n times and after it considers the Cauchy’s
formula where factorial is replaced by the Gamma function because of this the term called
Fractional Integral of Non - Integer Order is outlined (see [2] and [3]). Therefore, By
using this R - L operator, various ( FD )fractional derivatives are defined which are stated
above (see [4] and [5]).
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The term variable - order fractional operator (VO – FO) has now been focused
and mathematically developed only in the current[6]. Foundation or base of of VO – FC
is the various phenomenon or physical systems that occur in nature which depends upon
the time domain and were especially used in fields like Viscoelastic Materials, Complex
Media, Mechanics, Biomedical Engineering, Model – order reduction of lumped parame-
ter systems and plasticity, Control theory and Optimization theory also in Time-dependent
Transport processes in non – local elasticity[7]. VO-FC is a branch of calculus that of-
fers tremendous opportunities to simulate integrative processes. The conceptualization of
variable–order fractional calculus was mathematically conceptualized only in recent years
by many mathematicians (see [8] and [9]). Samko and Ross were the first who propose
the concept of variable-order integral and differential as well as some basic properties in
1993[10]. The research results of the variable-order fractional operators (VO – FO) af-
ter that investigation in the definitions of variable order fractional operators in different
forms were summarized by Lorenzo and Hartley (see [11], [12] and [13]). We know
that many physical systems change over time domain, even transitioning from a fractional
order to another order, which gives main interest in fractional operators moving to their
variable–order counterparts. Over the years, several proposals for fractional variable-order
operators have appeared in the literature (see [14], [15] and [16]).

The Mittag - Leffler(M - L) function come to light in the solution of Fractional
- Order Integral Equations or Fractional - Order Differential Equations, and principally in
the L’evy flights, research of the fractional - generalization of the kinetic equation, in the
exploration of Complex Systems, random walks and Super Diffusive Transport(see [17],
[18], [19] and [20]).

Through out in these years we can see the evolution in (FC) Fractional Cal-
culus. These functions has procured admiration and graveness on account on the basis of
its massive applications in the field of engineering as well as in science[21]. Also in these
few years, fascination in the Mittag - Leffler(M - L) function and functions like Mittag -
Leffler(M - L) functions is significantly elevated among scientists as well as engineers due
to their wide ability for explorations in several various applied queries(see [22] and [23]).

Fractional calculus (FC) and variable-order fractional calculus (VO-FC) have
demonstrated remarkable versatility, with applications spanning diverse fields and do-
mains. Advanced methods and frameworks have been developed to explore their proper-
ties and applications in detail. For instance, FC is employed in neural computing frame-
works for forecasting non-standard nanofluid flow properties, incorporating novel physical
parameters to model complex nanoscale behaviors[24]. Intricate fractal fractional-order
simulations are used to analyze CO2 emissions from the energy sector, providing pre-
cise tools for environmental management[25]. In epidemiology, the piecewise modified
ABC fractional order derivative has been applied to rotavirus infection models, offering
deeper insights into disease dynamics. FC also proves valuable in analyzing media hetero-
geneity and network systems, enabling sophisticated studies of complex interactions[26].
Furthermore, singular fractional differential equations are solved using a modified Picard
iterative approach and the psi-Caputo operator[27], while existence theorems for periodic
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boundary conditions in psi-fractional hybrid systems establish foundational principles for
fractional dynamics[28]. These applications highlight the transformative potential of frac-
tional calculus in modeling, simulation, and prediction across multidisciplinary domains.

This paper mainly divided into four parts, In the first part we have given an
introduction towards variable order fractional calculus, Riemann Liouville approach of
fractional calculus and Mittag - Leffler(M - L) function. The second part gives an extensive
vision of theoretical development in the variable-order R - L Fractional derivative along
with fractional integration respectively. The third part consists of conclusion part of our
manuscript in detail and the last part we have references and bibliography for the same.

2. Theorotical Advancement:

2.1. Theorotical Advancement in Variable - Order ( FD )Fractional derivative
Theorem 2.1. The elementary representation of the variable-order R-L ( FD )Fractional
derivative RL

0 D
E0(u)
1 g(u), where g(u) = u and α(u) = E0(u) is,

RL
0 D

E0(u)
1 (u) =

1
Γ(3 − E0(u))

under the condition u ∈ R

Proof: We Know that,

E0(u) =
1

1 − u
;u ∈ R.

By definition of Variable Order R-L Fractional Derivative,

RL
0 D

α(u)
1 (u) =

1
Γ(1 −α(u))

∫ 1

0
(u− η)(−α(u))g(η)dη

=⇒ RL
0 D

E0(u)
1 (u) =

1
Γ(1 − E0(u))

∫ 1

0
(1 − η)(−E0(u))(η)dη

=
1

Γ(1 − E0(u))

∫ 1

0
(1 − η)[1−(E0(u))−1](η)(2−1)dη

=
1

Γ(1 − E0(u))

∫ 1

0
(1 − η)[1−(E0(u))]−1(η)(2−1)dη

By the definition of Beta function, we get,

RL
0 D

E0(u)
1 (u) =

1
Γ [1 − E0(u)]

B(1 − (E0(u)), 2)

By using the property of Beta function, we get,

RL
0 D

E0(u)
1 (u) =

1
Γ [1 − E0(u)]

Γ [1 − E0(u)]Γ(2)
Γ(1 − E0(u) + 2)
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=
Γ(2)

Γ(1 − E0(u) + 2)

= 1
Γ(3−E0(u))

∴ RL
0 D

E0(u)
1 (u) =

1
Γ(3 − E0(u))

;u ∈ R

Figure 1:

Theorem 2.2. The elementary representation of the variable-order R-L ( FD )Fractional
derivative RL

0 D
E0(u)
1 h(u), where h(u) = un for α(u) = E0(u), is given by

RL
0 D

E0(u)
1 (un) =

n!
Γ(n+ 2 − E0(u))

under the condition u ∈ R,n ∈ N ∪ {0}

Proof: We Know that,

E0(u) =
1

1 − u
;u ∈ R,E0(u) ∈ R,n ∈ N ∪ {0}.

By the definition of variable-order R-L ( FD )Fractional derivative,

RL
0 D

α(u)
1 (un) =

1
Γ(1 −α(u))

∫ 1

0
(u− η)(−α(u))h(η)dη

=⇒ RL
0 D

E0(u)
1 (un) =

1
Γ(1 − E0(u))

∫ 1

0
(1 − η)(−E0(u))(ηn)dη

=
1

Γ(1 − E0(u))

∫ 1

0
(1 − η)[1−(E0(u))−1](η)(n+1−1)dη
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=
1

Γ(1 − E0(u))

∫ 1

0
(1 − η)[1−(E0(u))]−1(η)(n+1)−1dη

By the definition of Beta function, we get,

RL
0 D

E0(u)
1 (un) =

1
Γ(1 − E0(u))

B(1 − (E0(u)), (n+ 1))

By using the property of Beta function, we get,

RL
0 D

E0(u)
1 (un) =

1
Γ [1 − E0(u)]

Γ [1 − E0(u)]Γ(n+ 1)
Γ [1 − E0(u) + (n+ 1)]

=
Γ [n+ 1]

Γ [1 − E0(u) + (n+ 1)]

= n!
Γ(n+2−E0(u))

∴ RL
0 D

E0(u)
1 (un) =

n!
Γ(n+ 2 − E0(u))

; u ∈ R,n ∈ N ∪ {0}

Figure 2:

3

Theorem 2.3. The elementary representation of the variable-order R-L ( FD )Fractional
derivative RL

0 D
E1(u)
1 (un), where h( u ) = un for α(u) = E1(u), is given by

RL
0 D

E1(u)
1 (un) =

n!
Γ(n+ 2 − E1(u))

under the condition u ∈ R,E1(u) ∈ (0,∞),n ∈ N ∪ {0}
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Proof: We Know that,

E1(u) = e
u ;u ∈ R,E1(u) ∈ (0,∞),n ∈ N ∪ {0}.

By the definition of variable-order R-L ( FD )Fractional derivative,

RL
0 D

α(u)
1 (un) =

1
Γ [1 −α(u)]

∫ 1

0
(u− η)(−α(u))h(η)dη

=⇒ RL
0 D

E1(u)
1 (un) =

1
Γ(1 − E1(u))

∫ 1

0
(1 − η)(−E1(u))(ηn)dη

=
1

Γ(1 − E1(u))

∫ 1

0
(1 − η)[1−(E1(u))−1](η)(n+1)−1dη

=
1

Γ(1 − E1(u))

∫ 1

0
(1 − η)[1−(E1(u))]−1(η)(n+1)−1dη

By the definition of Beta function, we get,

RL
0 D

E1(u)
1 (un) =

1
Γ(1 − E1(u))

B(1 − (E1(u)), (n+ 1))

By using the property of Beta function, we get,

RL
0 D

E1(u)
1 (un) =

1
Γ(1 − E1(u)]

Γ [1 − E1(u)]Γ(n+ 1)
Γ [1 − E1(u) + (n+ 1)]

=
Γ(n+ 1)

Γ(1 − E1(u) + (n+ 1))

= n!
Γ((n+2)−E1(u))

∴ RL
0 D

E1(u)
1 (un) =

n!
Γ(n+ 2 − E1(u))

where u ∈ R,E1(u) ∈ (0,∞),n ∈ N ∪ {0}



Nikam, Manjarekar / Variable order R-L fractional calculus... 35

Figure 3:

Theorem 2.4. The elementary representation of the variable-order R-L ( FD )Fractional
derivative RL

0 D
E2(u)
1 (un), where g(u) = un for α(u) = E2(u), is given by

RL
0 D

E(u)

1 (un) =
n!

Γ(n+ 2 − E2(u))

under the condition where u ∈ R such that E2(u) ∈ [1,∞),n ∈ N ∪ {0}

Proof : We Know that,

E2(u) = cosh(
√
u)

where u ∈ R such that E2(u) ∈ [1,∞),n ∈ N ∪ {0}.
By the definition of variable-order R-L ( FD )Fractional derivative,

RL
0 D

α(u)
1 (un) =

1
Γ(1 −α(u))

∫ 1

0
(u− η)(−α(u))g(η)dη

=⇒ RL
0 D

E2(u)
1 (un) =

1
Γ(1 − E2(u))

∫ 1

0
(1 − η)(−E2(u))(ηn)dη

=
1

Γ(1 − E2(u))

∫ 1

0
(1 − η)[1−(E2(u))−1](η)(n+1−1)dη

=
1

Γ(1 − E2(u))

∫ 1

0
(1 − η)[1−(E2(u))]−1(η)(n+1)−1dη
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By the definition of Beta function, we get,

RL
0 D

E2(u)
1 un) =

1
Γ(1 − E2(u))

B(1 − (E2(u)), (n+ 1))

By using the property of Beta function, we get,

RL
0 D

E2(u)
1 (n) =

1
Γ [1 − E2(u)]

Γ [1 − E2(u)]Γ(n+ 1)
Γ [1 − E2(u) + (n+ 1)]

=
Γ(n+ 1)

Γ(1 − E2(u) + (n+ 1))

= n!
Γ((n+2)−E2(u))

∴ RL
0 D

E2(u)
1 (un) =

n!
Γ(n+ 2 − E2(u))

where u∈ R such that E2(u) ∈ [1,∞),n ∈ N ∪ {0}

Figure 4:

Theorem 2.5. The elementary representation of the variable-order R-L ( FD )Fractional
derivative RL

0 D
Ep(u)
1 (un), h ( u ) = un for α(u) = Ep(u), is given by

RL
0 D

Ep(u)
1 (un) =

n!
Γ(n+ 2 − Ep(u))

where Ep(u) is Mittag - Leffler function of one parameter with parameter α = p and u ∈ R

such that Ep(u) exist, u∈ N ∪ {0}
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Proof: We Know that,

Ep(t) =

∞∑
k=0

pk

Γ(pk+ 1)
,

where t∈ R such that Ep(t) exist, n∈ N ∪ {0}.
By the definition of variable-order R-L ( FD )Fractional derivative,

RL
0 D

α(u)
1 (un) =

1
Γ(1 −α(u))

∫ 1

0
(u− η)(−α(u))h(η)dη

=⇒ RL
0 D

Ep(u)
1 (un) =

1
Γ(1 − Ep(u))

∫ 1

0
(1 − η)(−Ep(u))(ηn)dη

=
1

Γ(1 − Ep(u))

∫ 1

0
(1 − η)[1−(Ep(u))−1](η)(n+1−1)dη

=
1

Γ(1 − Ep(u))

∫ 1

0
(1 − η)[1−(Ep(u))]−1(η)(n+1)−1dη

By the definition of Beta function, we get,

RL
0 D

Ep(u)
1 (un) =

1
Γ(1 − Ep(u))

B((1 − Ep(u)),n+ 1)

By using the property of Beta function, we get,

RL
0 D

Ep(u)
1 (un) =

1
Γ [1 − Ep(u)]

Γ [1 − Ep(u)]Γ(n+ 1)
Γ(1 − Ep(u) +n+ 1)

=
Γ(n+ 1)

Γ(1 − Ep(u) +n+ 1)

= n!
Γ(n+2−Ep(u))

∴ RL
0 D

Ep(u)
1 (un) =

n!
Γ(n+ 2 − Ep(u))

where u ∈ R such that Ep(u) exist and n∈ N ∪ {0}

2.2. Theorotical Advancement in variable order fractional integration
Theorem 2.6. The elementary representation of the variable-order R-L ( FI )Fractional inte-
gration RL

0 I
E0(u)
1 (u) is given by

RL
0 I

E0(u)
1 (u) =

1
Γ(E0(u) + 2)

where E0(u) is Mittag - Leffler function of one parameter with parameter α = 0, u ∈ R
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Proof: We Know that,

E0(u) =
1

1 − u
;u ∈ R.

By the definition of variable-order R-L ( FI )Fractional integration,

=⇒ RL
0 I

E0(u)
1 (u) =

1
Γ(E0(u))

∫ 1

0
(1 − η)(E0(u)−1)(η)dη

=
1

Γ(E0(u))

∫ 1

0
(1 − η)[(E0(u))−1](η)(2−1)dη

By the definition of Beta function, we get,

RL
0 I

E0(u)
1 (u) =

1
Γ(E0(u))

B(E0(u), 2)

By using the property of Beta function, we get,

RL
0 D

E0(u)
1 (u) =

1
Γ [E0(u)]

Γ [E0(u)]Γ(2)
Γ(E0(u) + 2)

=
Γ(2)

Γ(E0(u) + 2)

=
1

Γ(E0(u) + 2)

∴ RL
0 I

E0(u)
1 (u) =

1
Γ(E0(u) + 2)

u ∈ R,E0(u) ∈ R

Figure 5:



Nikam, Manjarekar / Variable order R-L fractional calculus... 39

Theorem 2.7. The elementary representation of the variable-order R-L ( FI )Fractional inte-
gration RL

0 I
E0(u)
1 (un) is given by

RL
0 I

E0(u)
1 (un) =

n!
Γ(E0(u) +n+ 1)

where E0(t) is Mittag - Leffler function of one parameter with parameter α = 0, u∈ R

Proof: We Know that,

E0(u) =
1

1 − u

where u∈ R, E0(u) ∈ R,n ∈ N ∪ {0}.
By the definition of variable-order R-L ( FI )Fractional integration,

=⇒ RL
0 I

E0(u)
1 (un) =

1
Γ(E0(u))

∫ 1

0
(1 − η)[E0(u)−1](ηn)dη

=
1

Γ(E0(u))

∫ 1

0
(1 − η)[E0(u)−1](η)[n+1−1]dη

By the definition of Beta function, we get,

RL
0 I

E0(u)
1 (un) =

1
Γ(E0(u))

B(E0(u),n+ 1)

By using the property of Beta function, we get,

RL
0 D

E0(u)
1 (un) =

1
Γ [E0(u)]

Γ [E0(u)]Γ(n+ 1)
Γ(E0(u) +n+ 1)

=
Γ(n+ 1)

Γ(E0(u) +n+ 1)

=
n!

Γ(E0(u) +n+ 1)

∴ RL
0 I

E0(u)
1 (un) =

n!
Γ(E0(u) +n+ 1)

where u ∈ R, E0(u) ∈ R,n ∈ N ∪ {0}

Theorem 2.8. The elementary representation of the variable-order R-L ( FI )Fractional inte-
gration RL

0 I
E1(u)
1 (un) is given by

RL
0 I

E1(u)
1 (un) =

n!
Γ(E1(u) +n+ 1)

where E1(u) is Mittag - Leffler function of one parameter with parameter α = 1, u ∈ R,
E1(u) ∈ (0,∞), n∈ N ∪ {0}
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Figure 6:

Proof: We Know that,

E1(u) = e
u

where u ∈ R, E1(u) ∈ (0,∞), n∈ N ∪ {0}.
By the definition of variable-order R-L ( FI )Fractional integration,

=⇒ RL
0 I

E1(u)
1 (un) =

1
Γ [E1(u)]

∫ 1

0
(1 − η)(E1(u)−1)(ηn)dη

=
1

Γ [E1(u)]

∫ 1

0
(1 − η)[E1(u)−1](η)[n+1−1]dη

By the definition of Beta function, we get,

RL
0 I

E1(u)
1 (un) =

1
Γ [E1(u)]

B(E1(u),n+ 1)

By using the property of Beta function, we get,

RL
0 D

E1(u)
1 (tn) =

1
Γ [E1(u)]

Γ [E1(u)]Γ(n+ 1)
Γ [E1(u) +n+ 1]

=
Γ(n+ 1)

Γ [E1(u) +n+ 1]

=
n!

Γ [E1(u) +n+ 1]

∴ RL
0 I

E1(u)
1 (un) =

n!
Γ [E1(u) +n+ 1]

where u ∈ R, E1(t) ∈ (0,∞), n∈ N ∪ {0}
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Theorem 2.9. The elementary representation of the variable-order R-L ( FI )Fractional inte-
gration RL

0 I
E2(u)
1 (un) is given by

RL
0 I

E2(u)
1 (u) =

n!
Γ(E2(u) +n+ 1)

where E2(u) is Mittag - Leffler function of one parameter with parameter α = 2, u ∈ R such
that E2(u) ∈ [1,∞),n ∈ N ∪ {0}

Proof: We Know that,

E2(u) = cosh(
√
u)

where u∈ R such that E2(u) ∈ [1,∞),n ∈ N ∪ {0}.

By the definition of variable-order R-L ( FI )Fractional integration,

=⇒ RL
0 I

E2(t)
1 (tn) =

1
Γ [E2(u)]

∫ 1

0
(1 − η)(E2(u)−1)(ηn)dη

=
1

Γ [E2(u)]

∫ 1

0
(1 − η)[E2(u)−1](η)[n+1−1]dη

By the definition of Beta function, we get,

RL
0 I

E2(u)
1 (tn) =

1
Γ [E2(u)]

B(E2(u),n+ 1)

By using the property of Beta function, we get,

RL
0 D

E2(u)
1 (un) =

1
Γ [E2(u)]

Γ [E2(u)]Γ(n+ 1)
Γ(E2(u) +n+ 1)

=
Γ [n+ 1]

Γ(E2(u) +n+ 1)

=
n!

Γ(E2(u) +n+ 1)

∴ RL
0 I

E2(u)
1 (un) =

n!
Γ(E2(u) +n+ 1)

where u∈ R such that E2(u) ∈ [1,∞), n∈ N ∪ {0}

Theorem 2.10. The elementary representation of the variable-order R-L ( FI )Fractional
integration RL

0 I
Ep(u)
1 (un) is given by

RL
0 I

Ep(u)
1 (un) =

n!
Γ(Ep(u) +n+ 1)

where Ep(u) is Mittag - Leffler function of one parameter with parameter α = p and u ∈ R

such that Ep(u) exist, n∈ N ∪ {0}
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Proof: We Know that,

Ep(u) =

∞∑
k=0

pk

Γ(pk+ 1)
,

where u ∈ R such that Ep(u) exist, n∈ N ∪ {0}.
By the definition of variable-order R-L ( FI )Fractional integration,

=⇒ RL
0 I

Ep(u)
1 (un) =

1
Γ [Ep(u)]

∫ 1

0
(1 − η)(Ep(u)−1)(ηn)dη

=
1

Γ [Ep(u)]

∫ 1

0
(1 − η)[Ep(u)−1](η)[n+1−1]dη

By the definition of Beta function, we get,

RL
0 I

Ep(u)
1 (un) =

1
Γ(Ep(u))

B(Ep(u), (n+ 1))

By using the property of Beta function, we get,

RL
0 D

Ep(u)
1 (un) =

1
Γ [Ep(u)]

Γ [Ep(u)]Γ(n+ 1)
Γ(Ep(u) +n+ 1)

=
Γ(n+ 1)

Γ(Ep(u) +n+ 1)

=
n!

Γ(Ep(u) +n+ 1)

∴ RL
0 I

Ep(u)
1 (un) =

n!
Γ(Ep(u) +n+ 1)

where u ∈ R such that Ep(u) exist, n∈ N ∪ {0}

3. Conclusions:

This research provides a comprehensive analysis of Variable Order R-L Fractional
Derivative and Integration for standard special functions, particularly the Mittag-Leffler
function. The findings demonstrate the effectiveness of this approach in solving fractional
differential equations with variable order and boundary conditions. Potential applications
extend to partial fractional differential equations. Numerical and graphical analyses offer
valuable insights into the impact of parameter variations on the Mittag-Leffler function
and polynomial degree.
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