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Abstract

In this article, several fundamental spectral results are established for the Sturm–Liouville problem
with discrete boundary conditions involving the generalized M-derivative. The paper is organized into four
sections. The first section provides a brief historical background of the topic. The second section presents
essential definitions and foundational theorems. In the third section, we investigate the uniqueness theorem
for the generalized M-derivative Sturm–Liouville boundary value problem on a finite interval and offer two
distinct methods for representing the solution. The final section offers a comprehensive evaluation of the
study, including a detailed visual analysis using graphical illustrations.
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1. Introduction

Fractional analysis has been the focus of attention of many researchers since the past.
Fractional analysis is the mathematical field that shows that the orders of integral and
derivative operators are arbitrary numbers. Many mathematicians in this field have made
many definitions using various notations [1]. Although fractional analysis applications
have shown significant developments in various fields today, its basic mathematical his-
tory dates back to 300 years. The definition of derivative is made by Leibniz in 1695.
Later, in the letter is written to L’Hospital Leibniz, the foundations of fractional analysis
is laid on the question of whether the order of the derivative fractional [2]. As the usage
areas of integral and derivative developed after Leibniz’s definition, there is needed to fur-
ther develop integral and derivative. The developed integral and derivative definitions are
played a very important role in the solution of fractional order mathematical problem [3].
In addition, the application of various studies in classical analysis to fractional analysis has
enabled obtaining precise results in solving many problems[4]. Studies have been done on
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analysis of fractional integral differential equations under Mittag-Leffler power law [5],
[6]. In 1844, Boole is developed different methods for solving linear differential equa-
tions with constant coefficients and is used fractional calculation to solve the problem.
Riemann is generalized the Taylor series and is given the definition of fractional integrals
in 1847. Nowadays, Riemann-Liouville, Caputo and Grunwald-Letnikov fractional deriva-
tive definitions are used widely [7]. Additionally, Oliveira and Sousa are obtained the
M−derivative, which is a derivative in a new format containing the Mittag-Leffler func-
tion [8]. Spectral theory appears as an application area for various physical problems and
many systems[9]. Therefore, boundary value problems involving differential equations
have been studied in order to design assorted problems of engineering and mathematical
physics. The solution to these problems are found by Charles François Sturm and Joseph
Liouville in 1836 by the Sturm-Liouville theory. Today, the Sturm-Liouville theory contin-
ues to be the focus of attention of many researchers. This is because mathematical physics
and quantum mechanics are the current problem. Various methods have been used to
obtain the representation of the solution of the Sturm-Liouville problem [10]. M−Laplace
transform method is very important technique to find the solution or representation of
differential equations [11].

2. Preliminaries

In this section, are given a little definitions and theorems necessary for our article.

Definition 2.1. [12] f :[0,∞)→ ℜ function be defined. For t > 0, β > 0 and α∈(0, 1) the
truncated M−series derivative of order α. of a function f is defined as

Dα
Mf(t) = lim

ε→0

f
(
Γ(γ)tMβ,γ

p,r (εt
−α)

)
− f(t)

ε
. (2.1)

The following definitions have been defined already with M−derivative and M−series
[11], [13], [10], [12], [14]. Here, we define these definitions using a different version of
the Laplace transform of the generalized truncated M−derivative and perform our opera-
tions accordingly.

Definition 2.2. Let f:[a,∞)→ ℜ, γ,β>0, a∈ℜ and 0<α⩽1. The Laplace transform of the
generalized truncated M−derivative of the function f is

La
α,β,γ{f(t)}(s) =

∫∞
a

e
−s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
[t− a]α

α f(t)dαt (2.2)

where dαt =
[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
(t− a)α−1dt.

The Laplace transform of some functions is illustrated through the medium of the
generalized truncated M−derivative:

• Lα,β,γ
{
tk
}
(s) =

Γ(1+ k
α)

(
α
[
a1···ap
c1···cr

· Γ(γ)
Γ(β+γ)

]) k
α

s
k+α
α
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• Lα,β,γ

{
e
n

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
tα

α
}
(s) =

1
s−n

s > n.

• Lα,β,γ

{
sin

(
b

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
tα

α

)}
(s) =

b

b2 + s2 s > 0.

• Lα,β,γ

{
cos

(
b

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
tα

α

)}
(s) =

s

b2 + s2 s > 0.

Definition 2.3. Let h(t) and g(t) are continuous functions and have exponential order,
then the convolution of h and g for the generalized truncated M−derivative is designated
by

(h ∗ g)(t) =
[ ∫t

a

h(τ)g(a+ ((t− a)α − (τ− a)α)

1
α )dατ

]
(2.3)

where dατ =
[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
(τ− a)α−1dτ.

3. Main results

In this section, the uniqueness theorem for the non-integer order generalized M-
derivative regular Sturm-Liouville problem and the representation of the solution of this
problem are given with two different methods. Let’s represent the Sturm-Liouville opera-
tor L with the generalized M-derivative as

L ≡ −D2α,β,γ
M + q(x). (3.1)

Here the function 0 < α ⩽ 1, [q(x)] is real and continuous in the spacing [a,b]. The aim
of this section is to take into account the Sturm-Liouville problem with discrete boundary
conditions:

Ly(x) = −D2α,β,γ
M y(x) + [q(x)y(x)] = λy(x). (3.2)

y(a) cosα+Dα,β,γ
M y(a) sinα = 0. (3.3)

y(b) cosβ+Dα,β,γ
M y(b) sinβ = 0. (3.4)

If cotβ = H, cotα = −h values are written for x ∈ [0,π], the boundary conditions can be
shown in the following form:

D
α,β,γ
M y(0) − hy(0) = 0. (3.5)

D
α,β,γ
M y(π) +Hy(π) = 0. (3.6)

It is worth noting that replacing the interval [a,b] with the interval [0,π] does not change
the boundary conditions of 3.3 and 3.4. Therefore, it is assumed that b = π and a = 0.
For any λn, the above boundary value problem has a non-trivial solution [y(x, λn)]. The
initial condition corresponding to the ϕ(x, λn) solution of equation 3.2 is

[ϕ(0, λ)] = 1,Dα,β,γ
M [ϕ(0, λ)] = h. (3.7)

[ψ(0, λ)] = 0,Dα,β,γ
M [ψ(0, λ)] = 1. (3.8)

Let the initial condition corresponding to the ψ(x, λ) solution is given as 3.8.
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Theorem 3.1 (Uniqueness Theorem). Let presume the function [q(x)] is continuous on the
interval [a,b]. In this case, for each ρ the ϕ(x, λ) solution of equation 3.2 in the range
a ⩽ x ⩽ b is unique. It is shown as

ϕ(a, λ) = sin
([

c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
ρα

α

)
,

D
α,β,γ
M ϕ(a, λ) = − cos

([
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
ρα

α

)
. (3.9)

Proof. Let choose the initial function in form

ϕ0(x, λ) = sin
([

c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
ρα

α

)
−

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
aα

α

)
cos

([
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
ρα

α

)
. (3.10)

This function is the solution of equation 3.2 that satisfies the conditions of 3.9. Let be

ϕn(x, λ) = ϕ0(x, λ) +
∫x
a

[q(t) − λ]ϕn−1(t, λ)
(
xα

α
−
tα

α

)
dαt (3.11)

for n>0. Since the function q(x) is continuous, it is |q(x)|<M in the interval a ⩽ x ⩽ b.
Presume that there are |ϕ0(x, λ)| ⩽ L and |λ|⩽N for a ⩽ x ⩽ b. Therefore, for n = 1 it
becomes

|ϕ1(x, λ) −ϕ0(x, λ)| =
∫x
a

|q(t) − λ||ϕ0(t, λ)|
∣∣∣∣xαα −

tα

α

∣∣∣∣dαt
⩽

∫x
a

L[M+N]

[
xα

α
−
tα

α

]
dαt

=
L[M+N]

2

[
xα

α
−
aα

α

]2

. (3.12)

For the status n ⩾ 2, first of all find ϕn−1(x, λ) and subtract it from ϕn(x, λ)

ϕn(x, λ) −ϕn−1(x, λ) =
∫x
a

[q(t) − λ][ϕn−1(t, λ) −ϕn−2(t, λ)]
[
xα

α
−
tα

α

]
dαt (3.13)

|ϕn(x, λ) −ϕn−1(x, λ)| ⩽ [M+N]

[
bα

α
−
aα

α

] ∫x
a

|ϕn−1(t, λ) −ϕn−2(t, λ)|dαt (3.14)

is obtained. In case n = 2 it becomes

|ϕ2(x, λ) −ϕ1(x, λ)| ⩽ [M+N]

[
bα

α
−
aα

α

] ∫x
a

|ϕ1(t, λ) −ϕ0(t, λ)|dαt

⩽
L[M+N]2

2

∫x
a

[
xα

α
−
aα

α

]2

dαt

=
L[M+N]2

3!

[
bα

α
−
aα

α

][
xα

α
−
aα

α

]3

. (3.15)
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If we generalized, to get

|ϕn(x, λ) −ϕn−1(x, λ)| ⩽
L[M+N]n

[
bα

α
−
aα

α

]n−1[
xα

α
−
aα

α

]n+1

(n+ 1)!
. (3.16)

Therefore, the

ϕ(x, λ) = ϕ0(x, λ) +
∞∑

n=1

[ϕn(x, λ) −ϕn−1(x, λ)] (3.17)

series converges smoothly to x and λ. Additionally,

D
α,β,γ
M ϕn(x, λ) −Dα,β,γ

M ϕn−1(x, λ) =
∫x
a

[q(t) − λ][ϕn−1(t, λ) −ϕn−2(t, λ)]dαt (3.18)

D
(2)α,β,γ
M ϕn(x, λ) −D(2)α,β,γ

M ϕn−1(x, λ) = [q(t) − λ][ϕn−1(t, λ) −ϕn−2(t, λ)] (3.19)

is obtained for n ⩾ 2. As a result, it becomes

D
(2)α,β,γ
M ϕ(x, λ) =

∞∑
n=1

[D
(2)α,β,γ
M ϕn(x, λ) −D(2)α,β,γ

M ϕn−1(x, λ)]

= [D
(2)α,β,γ
M ϕ1(x, λ) −D(2)α,β,γ

M ϕ0(x, λ)]

+

∞∑
n=2

[D
(2)α,β,γ
M ϕn(x, λ) −D(2)α,β,γ

M ϕn−1(x, λ)]. (3.20)

If equation 3.19 is substituted in equation 3.20,

D
(2)α,β,γ
M ϕ(x, λ) = [q(x) − λ]

[
ϕ0(x, λ) +

∞∑
n=2

[ϕn−1(x, λ) −ϕn−2(x, λ)]
]

= [q(x) − λ]ϕ(x, λ) (3.21)

is acquired. In this situation, it is seen that the [ϕ(x, λ)] function satisfies initial conditions
and equation 3.2. Thus the proof is completed. Considering the given conditions, it is
concluded that the uniqueness of ϕ is satisfied.
The Theorem, has a very significant role in finding the asymptotic formulas of eigenvalues
and eigenfunctions, which have a very important place in spectral theory. In parallel with
this result, let’s obtain the representation of the solution for the problem considered using
two methods.

Theorem 3.2. Let λ = s2. In this case it is in the form

ϕ(x, λ) = cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+
h

s
sin

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+

1
s

∫x
0

sin
[
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

)]
q(τ)ϕ(τ, λ)dατ (3.22)
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and

ψ(x, λ) =
1
s

sin
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+

1
s

∫x
0

sin
[
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

)]
q(τ)ψ(τ, λ)dατ. (3.23)

Here dατ =
[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
τα−1dτ is taken.

Proof with Method of Variation of Parameters:
Let obtain the representation of the solution of equation 3.2 by using the method of change
of constants shown in the previous section. Let the special solution yp of equation 3.2 be

yp(x) = v1(x) cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+ v2(x) sin

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
.

(3.24)
If we take the generalized M−derivative of equation 3.24, get

D
α,β,γ
M yp(x) = v1(x)D

α,β,γ
M

[
cos

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)]
+ cos

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
D

α,β,γ
M v1(x)+v2(x)D

α,β,γ
M

[
sin

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)]
+ sin

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
D

α,β,γ
M v2(x). (3.25)

From here, equations

D
α,β,γ
M v1(x) cos

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+Dα,β,γ

M v2(x) sin
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
= 0 (3.26)

D
α,β,γ
M v1(x)

[
− s sin

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)]
+Dα,β,γ

M v2(x)

[
s cos

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)]
= [q(x) − λ]y(x) (3.27)

are achieved. The α,β,γ−Wronskian of y1 and y2 is found to be∣∣∣∣∣∣∣∣∣∣
cos

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
sin

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)

−s sin
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
s cos

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
∣∣∣∣∣∣∣∣∣∣
= s. (3.28)
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Then, if equation

D
α,β,γ
M v1(x) =

∣∣∣∣∣∣∣∣∣∣
0 sin

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)

[q(x) − λ]y(x) s cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
∣∣∣∣∣∣∣∣∣∣

s

= −
1
s

sin
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
[q(x) − λ]y(x) (3.29)

is integrated, it is found in the form

v1(x) = −
1
s

∫x
0

sin
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
τα

α

)[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
q(τ)y(τ)τα−1dτ. (3.30)

Similarly, if the equation

D
α,β,γ
M v2(x) =

∣∣∣∣∣∣∣∣∣∣
cos

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
0

−s sin
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
[q(x) − λ]y(x)

∣∣∣∣∣∣∣∣∣∣
s

=
1
s

cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
[q(x) − λ]y(x) (3.31)

is integrated,

v2(x) =
1
s

∫x
0

cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
τα

α

)[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
q(τ)y(τ)τα−1dτ (3.32)

is found. If the values of v1(x) and v2(x) are substituted in equation 3.24, the special
solution of yp(x) is obtained as

yp(x) =
1
s

∫x
0

sin
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

))
q(τ)y(τ)dατ. (3.33)

Here dατ=
[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
τα−1dτ is taken. Therefore, the representation of the solu-

tion of equation 3.2 is in the form

y(x) = c1y1(x) + c2y2(x) +
1

Wα,β,γ

∫x
0
[y1(x)y2(τ) − y2(x)y1(τ)]q(τ)y(τ)dατ. (3.34)

Since

y1(x) = cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
, y2(x) = sin

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
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it is taken as

y(x) = c1 cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+ c2 sin

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+

1
s

∫x
0

sin
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

))
q(τ)y(τ)dατ. (3.35)

If the initial conditions 3.7 are used, the representation of solutions is obtained

ϕ(x, λ) = cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+
h

s
sin

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+

1
s

∫x
0

sin
[
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

)]
q(τ)ϕ(τ, λ)dατ. (3.36)

Similarly, if the initial conditions of 3.8 are used, the other representation of the solution
of equation 3.2 is

ψ(x, λ) =
1
s

sin
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+

1
s

∫x
0

sin
[
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

)]
q(τ)ψ(τ, λ)dατ. (3.37)

Proof by means of Method of Laplace transform:
Let’s obtain the representation of the solution of equation 3.2 with the help of the Laplace
transform of the generalized truncated M−derivative. First, let us consider the generalized
truncated M−derivative Sturm-Liouville problem with initial condition 3.7 as follows.

−D
(2)α,β,γ
M ϕ(x) + q(x)ϕ(x) = λϕ(x). (3.38)

If we apply the Lα,β,γ transformation of both sides of the expression 3.38, it becomes

−Lα,β,γ
[
D

(2)α,β,γ
M ϕ(x)

]
+Lα,β,γ

[
q(x)ϕ(x)

]
= Lα,β,γ

[
λϕ(x)

]
. (3.39)

With the help of initial conditions 3.7, equality

φα,β,γ(s) =
s

s2 + λ
+

h

s2 + λ
+

1
s2 + λ

∫∞
0
e
−s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α q(x)ϕ(x)dαx (3.40)

is achieved. If the transformation L−1
α,β,γ is applied to both sides of equation 3.40,

L−1
α,β,γ[φα,β,γ(s)] = L−1

α,β,γ

[
s

s2 + λ

]
+L−1

α,β,γ

[
h

s2 + λ

]

+L−1
α,β,γ

[
1

s2 + λ

∫∞
0
e
−s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α q(x)ϕ(x)dαx

]
(3.41)
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is obtained.
L−1
α,β,γ[φα,β,γ(s)] = ϕ(x, λ)

L−1
α,β,γ

[
s

s2 + λ

]
= cos

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
L−1
α,β,γ

[
h

s2 + λ

]
=

h√
λ

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
equations are written. The expression

L−1
α,β,γ

[
1

s2 + λ

∫∞
0
e
−s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α q(x)ϕ(x)dαx

]
becomes

1√
λ

∫x
0

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

))
q(τ)ϕ(τ, λ)dατ

by using the convolution feature. Thus, the representation of solution

ϕ(x, λ) = cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+
h√
λ

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+

1√
λ

∫x
0

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

))
q(τ)ϕ(τ, λ)dατ (3.42)

are accessed. Here dατ=
[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
τα−1dτ. If λ=s2 is taken into account in equa-

tion 3.42, equation 3.36 obtained by the change of constants method is arrived.
Application 1.

−D2α,β,γ
M ϕ(x) + (x2 + 1)ϕ(x) = λϕ(x) (3.43)

Let obtain the representation of the solution of equation 3.43 with the aid of the Laplace
transform of the generalized truncated M−derivative.

If we apply Lα,β,γ transformation of both sides of the expression 3.43, it becomes

−Lα,β,γ
[
D

(2)α,β,γ
M ϕ(x)

]
+Lα,β,γ

[
(x2 + 1)ϕ(x)

]
= Lα,β,γ

[
λϕ(x)

]
. (3.44)

With the aid of initial conditions 3.7, equality

φα,β,γ(s) =
s

s2 + λ
+

h

s2 + λ
+

1
s2 + λ

∫∞
0
e
−s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α (x2 + 1)ϕ(x)dαx

(3.45)
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is achieved. If the transformation L−1
α,β,γ is applied to both sides of equation 3.45,

L−1
α,β,γ[φα,β,γ(s)] = L−1

α,β,γ

[
s

s2 + λ

]
+L−1

α,β,γ

[
h

s2 + λ

]

+L−1
α,β,γ

[
1

s2 + λ

∫∞
0
e
−s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α (x2 + 1)ϕ(x)dαx
]

(3.46)

is obtained.
L−1
α,β,γ[φα,β,γ(s)] = ϕ(x, λ)

L−1
α,β,γ

[
s

s2 + λ

]
= cos

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
L−1
α,β,γ

[
h

s2 + λ

]
=

h√
λ

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
equations are written. The expression

L−1
α,β,γ

[
1

s2 + λ

∫∞
0
e
−s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α (x2 + 1)ϕ(x)dαx
]

becomes

1√
λ

∫x
0

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

))
(τ2 + 1)ϕ(τ, λ)dατ

by using the convolution feature. Thus, the representation of solution

ϕ(x, λ) = cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+
h√
λ

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+

1√
λ

∫x
0

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

))
(τ2 + 1)ϕ(τ, λ)dατ (3.47)

are accessed. Here dατ=
[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
τα−1dτ. λ=s2 is taken.

Application 2.
−D2α,β,γ

M ϕ(x) + sin (x)ϕ(x) = λϕ(x) (3.48)

Let obtain the representation of the solution of equation 3.48 with the aid of the Laplace
transform of the generalized truncated M−derivative.

If we apply the Lα,β,γ transformation of both sides of the expression 3.48, it becomes

−Lα,β,γ
[
D

(2)α,β,γ
M ϕ(x)

]
+Lα,β,γ

[
sin (x)ϕ(x)

]
= Lα,β,γ

[
λϕ(x)

]
. (3.49)
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With the help of initial conditions 3.7, equality

φα,β,γ(s) =
s

s2 + λ
+

h

s2 + λ
+

1
s2 + λ

∫∞
0
e
−s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α sin (x)ϕ(x)dαx

(3.50)
is achieved. If the transformation L−1

α,β,γ is applied to both sides of equation 3.50,

L−1
α,β,γ[φα,β,γ(s)] = L−1

α,β,γ

[
s

s2 + λ

]
+L−1

α,β,γ

[
h

s2 + λ

]

+L−1
α,β,γ

[
1

s2 + λ

∫∞
0
e
−s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α sin(x)ϕ(x)dαx
]

(3.51)

is obtained.
L−1
α,β,γ[φα,β,γ(s)] = ϕ(x, λ)

L−1
α,β,γ

[
s

s2 + λ

]
= cos

(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
L−1
α,β,γ

[
h

s2 + λ

]
=

h√
λ

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
equations are written. The expression

L−1
α,β,γ

[
1

s2 + λ

∫∞
0
e
−s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α sin (x)ϕ(x)dαx

]
becomes

1√
λ

∫x
0

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

))
sin (τ)ϕ(τ, λ)dατ

by using the convolution feature. Thus, the representation of solution

ϕ(x, λ) = cos
(
s

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+
h√
λ

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
xα

α

)
+

1√
λ

∫x
0

sin
(√

λ

[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

](
xα

α
−
τα

α

))
sin (τ)ϕ(τ, λ)dατ (3.52)

are accessed. Here dατ=
[
c1...cr
a1...ap

Γ(β+ γ)

Γ(γ)

]
τα−1dτ. λ=s2 is taken.
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Figure 1: Evaluating the eigen-
function ψ(x, λ)

Figure 2: Representation of the
solution of the eigenfunction
ψ(x, λ)

Figure 3: Graph of the solution
representation of the eigenfunc-
tion [ψ(x, λ)]

Figure 4: Graphical act of the
solution representation of the
eigenfunction [ϕ(x, λ)]

Figure 5: Graphical movement
of the solution representation of
the eigenfunction [ψ(x, λ)]

Figure 6: Graphical movement
of the solution representation of
the eigenfunction [ψ(x, λ)]

Figure 7: Visual of the eigen-
function [ϕ(x, λ)]

Figure 8: Visual of the eigen-
function [ϕ(x, λ)]

Figure 9: Behavior of the solu-
tion representation of the eigen-
function [ϕ(x, λ)]

Figure 10: Act of the solution im-
age of the eigenfunction [ϕ(x, λ)]

Figure 11: Visual of the eigen-
function for [q(x) = x2 + 1]

Figure 12: Visual of the eigen-
function for [q(x) = sin(x)]

Figure 12, is obtained the representation of the eigenfunction 3.52 for the values s=2,
β=1, γ=4, γ=5, γ=6 and α=0.3. Therefore, as a result of these examinations, it has
been visually proven that when the values of (a1 · · ·ap) = (c1 · · · cr), α, β and γ are 1,
overlap or very closely approximate the appearance of the classical solution. Moreover,
the 3.2–3.4 solution of the generalized M-derivative Sturm-Liouville problem is illustrated
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through the generalized M-Laplace transform and the variation of generalized constants.
The Sturm-Liouville problem considered, representation of the solution is obtained with
the help of the generalized M-Laplace transform by substituting (x2 + 1) and sin(x) in-
stead of the potential function q(x).

4. Conclusions

In this section, the spectral construction of the Sturm-Liouville problem with discrete
boundary conditions applied in the classical sense is examined through the generalized
truncated M−derivative. We exhibition an exhaustive for the unlike values of α, β, γ
and s cantilevered by graphs. The visual behavior of the problems given the theory is
examined. Figure 1, is shown the solution of [ψ(x, λ)] by giving values β=2, s=2, γ=1,
α=0.25, α=0.50, α=0.75 and α=0.95. In Figure 2, the behavior of the representation of
the solution of the eigenfunction [ψ(x, λ)] is examined by considering three different α
values. Figure 3, is obtained the solution of the [ψ(x, λ)] using the values γ=1, α=0.6,
s=5, s=6, s=8 and β=1. Figure 4, is indicated the behavior of the solution representation
of the eigenfunction for s=1, s=3, α=0.75, β=3 and γ=2 values. Figure 5, is shown the
representation of equation [ψ(x, λ)] for values of s=5, γ=2, β=1, α=0.3, α=0.5, α=0.7
and α=0.9. Figure 6, the representation of the solution is analyzed using the values s=π,
β=2, γ=2, α=0.4, α=0.6, α=0.8, α=0.98 and α=1. Figure 7, the representation of the
[ϕ(x, λ)] solution is analyzed for the values s=4, γ=1, β=2 and α=3/5. In Figure 8, the
eigenfunction [ϕ(x, λ)] is examined by giving values s=2, γ=1, γ=3, γ=4 and β=1. Figure
9, the behavior of [ϕ(x, λ)] is observed by using the data of s=5, α=2/3, β=5, β=4, β=3,
β=2, γ=1 and h=1. Figure 10, the eigenfunction [ϕ(x, λ)] is shown for the data s=π/6,
β=2, γ=1, α=0.45, α=0.7, α=0.9, α=1 and h=1. Figure 11, is shown the eigenfunction
3.47 for s=2.5, β=2, γ=3, α=0.5, α=0.8 and α=1 values.
The generalized Sturm-Liouville problem is defined with respect to the generalized M-
derivative. This article is considered as the first step in finding spectral data. In the light
of the data here, asymptotic formulas for eigenvalues, eigenfunctions and normalized
numbers will be obtained in the future.
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