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Abstract

In this work, we investigate the solvability of a new class of nonlinear coupled systems of Urysohn-
Volterra quadratic integral equations involving the generalized fractional kernel functions. By using the Leray-
Schauder version of the fixed point theorem in the vectorial Banach algebra space, we prove the existence
of solutions of the proposed system under suitable conditions. We investigate the stability analysis of the
proposed system. Moreover, we establish some special examples and particular cases.

Keywords: Fixed point; Banach algebra, nonlinear integral equations, fractional integral, Leray-Schauder
kind fixed point theorem.

1. Introduction

Integral equations innovate a very important field of functional analysis. This is due
to the great importance of the integral equations because it is used in many applications,
especially applications stemming from real life events such as nuclear energy [1], heat
conduction [2], electromagnetic [3] and signal processing [4].

In addition, the fractional differential and integral equations are applicable in a wide
range of other scientific subfields, such as mathematical modeling of emanations from
energy sector [5], and the mathematical approach for diseases detection [6, 7, 8].

Operator equations create the basic tool of investigation conducted in the integral
equations. In most cases, the proving of solvability of those equations of operators is done
via applying fixed point approach. Many researchers established the fixed point theorems
of sum and product of more than or equal three operators, (for examples, please see
[9, 10, 11, 12, 13, 14, 15, 16].

In 2017, Hashem [17] established the solvability of the system of integral equations of
Chandrasekhar kind
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u(t) = F1(t,u(t)) +G1(t, v(t))
∫t

0

t

t+ s
U1(s, v(s))ds, t ∈ [0,a]

v(t) = F2(t, v(t)) +G2(t,u(t))
∫t

0

t

t+ s
U2(s,u(s))ds, t ∈ [0,a],

(1.1)

where, (a > 0) ∈ R+.The solvability results of the system (1.1) is obtained via Amar et al.
[11] fixed point version for the block operator 2 × 2 matrix .

Fractional calculus is an essential and useful branch of mathematical analysis that
investigated derivatives and integrals of fractional order. A long time ago, there are
many definitions for fractional integrals operators, such as Riemann-Liouvilla, Hadamard,
Katagampolg and Erdelyi-Kober fractional integral operators. Recently, in 2017, Almeida
[18] proposed new definition of the fractional derivative and called this operatorψ−Caputo
derivative. This new definition is more generalized then Riemann-Liouville, Hadamard,
Erdely Kober and Caputo operators kinds.

In 2018, Darwish et al. [19] applied the approach of Darbo’s fixed point to investigate
the following Urysohn-Volterra integral equation

u(t) = f(t,u(t)) + g(t,u(t))
∫t

0

ψ ′(s)(ψ(t) −ψ(s))p−1

Γ(p)
h(s,u(s))ds, t ∈ [0,a], (1.2)

where, (a > 0) ∈ R+ and p ∈ (0, 1). The authors gave the existence of the solution
of Equ.(1.2) under some certain conditions. In the same year, Nieto et al. [13] proposed
some new versions of the fixed point theorems in algebra generalized Banach spaces. They
established the type of Krasnosel’skki and Leray-Schauder fixed point for the product and
sum of more than or equal two operators.

In 2019, Hahem et.al.[20], applying again the Amar et al. [11] fixed point approach
to study the following system

u(t) = F1(t,u(t)) + G1(t, v(t))
∫t

0

(t− s)p−1

Γ(p)
S1(s, v(s))ds, t ∈ [0,a],

v(t) = F2(t, v(t)) + G2(t,u(t))
∫t

0

(t− s)q−1

Γ(q)
S2(s,u(s))ds, t ∈ [0,a],

(1.3)

where, (a > 0) ∈ R+ and p,q ∈ (0, 1).

In 2020, Abdo [21] considered the existence results for at least one continuous solu-
tion for generalized fractional quadratic functional integral equation by using Schauder
fixed point theorem.

Consider I = [a,b]. Let C(I) be the Banach algebra of all continuous real-valued
function on I with the supremum norm ∥u∥∞ = sup

t∈I
|u(t)| , ∀ u ∈ C(I) and pointwise

product of functions. In this paper, we will apply the Nieto type fixed point theorem in
Generalized vectorial algebra Banach space [13] to study the following nonlinear system
of fractional integral equations:
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u(t) = F1(t,u(t), v(t)) +H1(t,u(t), v(t))
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
U1(s,u(s), v(s))ds, t ∈ [a,b]

v(t) = F2(t,u(t), v(t)) +H2(t,u(t), v(t))
∫t
a

ψ ′(s)(ψ(t) −ψ(s))β−1

Γ(β)
U2(s,u(s), v(s))ds, t ∈ [a,b],

(1.4)
where, I = [a,b] such as (b > a), a ∈ R+ ∪ {0} , b ∈ R+ and α,β ∈ (0, 1). The func-

tions F1, F2,H1,H2,U1,U2 : I× R × R → R are continuous. The the function ψ : I→ R is
a continuous, increasing, ψ ∈ C1(I, R) and ψ ′(t) ̸= 0 for all t ∈ I.

This article is organized as. Sect.2 is devoted to give some facts, basic results and
definitions which will be used in the outcomes. In sect.3, we investigate the solvability of
the system (1.4). In sect. 4, we establish the stability analysis of the system (1.4). Finally,
we discuses some applications of the given results in Sect.5.

2. Preliminary

Throughout this paper, RN+ will denote the set {u ∈ RN : ai < 0 ∀i = 1, 2, ...,N}.
Let u = (a1,a2, ...,aN), v = (b1,b2, ...,bN) ∈ RN . Define the partial order ⪯N in RN

such that: u ⪯N v ⇔ ai ⩽ bi for all i = 1, 2, ...,N. Also , if c ∈ R then u ⩽ c

means ai ⩽ c for all i = 1, 2, ...,N. Furthermore, |u| = (|a1|, ..., |aN|) and max(u, v) =
(max{a1,b1}, ..., max{aN,bN}). Therefore, 0N be the zero vector of RN. Next, we state the
definition of generalized metric space, for more details , see [13, 22, 23, 24].

Definition 2.1 [25] Let V ̸= φ and ρ : V ×V → RN, then ρ is said to be vector-valued-
metric on V if for all (u, v,w) ∈ V3 the following properties hold:

(1)ρ(u, v) ⪰N 0N;
(2) ρ(u, v) = 0N ⇔ u = v;
(3) ρ(u, v) = ρ(v,u);
(4)ρ(u, v) ⪯N ρ(u,w) + ρ(w, v).
(V , ρ) is called a generalized metric space and ρ is defined as

ρ(u, v) =


ρ1(u, v)
ρ2(u, v)

...
ρN(u, v)

 .

Clearly, ρ is a generalized metric on V if and only if ρi are usual metrics, for all i =
1, 2, ...,N. We indicate that, the concepts of the sequences, cauchy sequences, convergence,
closed and open subsets and completeness are the same like to those for usual metric
spaces.

Definition 2.2 [13] Let V be a vectorial space over R . A vector-valued generalized
norm on V is a map ∥.∥ : V → RN+ such that for all (u, v) ∈ V and κ ∈ R the following
conditions hold:

1) ∥u∥ ⪰N 0N ;
2) ∥u∥ = 0N ⇔ u = 0N;
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3)∥κu∥ = |κ|∥u∥ ;
4) ∥u+ v∥ ⪯N ∥u∥+ ∥v∥.
(V , ∥.∥) is said to be generalized normed space. If (ρ(u, v) = ∥u− v∥) is complete, then

(V , ∥.∥) is said to be a generalized Banach space.
Definition 2.3 [13] Let MN×N(R+) be the family of all square matrices of size N

which entries are positive real numbers. Suppose that, L ∈ MN×N(R+), then the spectral
radius σ(L) of L is defined as

σ(L) = max{|λj(L)| : i = 1, 2, ...,N},

where λj(L), i = 1, ...,N are the eigenvalues for L.
Definition 2.4 [13] The Generalized Banach algebra V is algebra that in the same time

is also generalized Banach space such that for all u, v ∈ V, then

∥uv∥ ⪯N ∥u∥∥v∥,

where

∥uv∥ =


∥uv∥1
∥uv∥2

...
∥uv∥N


and

∥u∥∥v∥ =


∥u∥1∥v∥1
∥u∥2∥v∥2

...
∥u∥N∥v∥N

 .

Definition 2.5 [24] Let (V , ρ) be a generalized metric space. The map T : V → V is
called contractive if ∃ L ∈ MN×N(R+) such that σ(L) < 1 and

ρ(Tu,Tv) ⪯N Lρ(u, v),

for all (u, v) ∈ V2.
The following theorem is generalized Leray-Schauder version fixed point [13] which

is the main tool to prove the results.

Theorem 2.1. [13] Let V be a generalized Banach algebra, 0 ∈ Ω be a bounded, convex and
an open subset of V . suppose that T1,T2 : V → V and T3 : Ω→ V are such that

(1) T1,T2 are L1,L2 contractive respectively, where L1,L2 ∈ MN×N(R+), L1 = (ℓij)1⩽i,j⩽N
and L2 = (ℓ̄ij)1⩽i,j⩽N;

(2) T3 is a completely continuous;

(3) (IV
T1
)−1 exists on T3(Ω), where IV(x) = x and IV

T1
: V → V begin defined as

(IV
T1
)(x) = x

T1x
;
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(4) Let 
b1
b2
...

bN

 ⪰N sup
u∈Ω

∥T3u∥

and

L∗ =

 b1ℓ11 . . . bNℓ1N
...

. . .
...

b1ℓN1 . . . bNℓNN

+

 ℓ̄11 . . . ℓ̄1N
...

. . .
...

ℓ̄N1 . . . ℓ̄NN

 ,

then L∗ ∈ MN×N(R+) and σ(L∗) < 1.

Then either:

(I) there exists u = T2(u) + T1(u)T3(u) has a solution in Ω̄, or
(II) there exist u ∈ Ω̄ \Ω such that

u = λT2(
u

λ
) + λT1(

u

λ
)T3(u),

λ ∈ (0, 1).

Next, we recall ψ−fractional integral operator, for more details, see [18].
Definition 2.6 Suppose that, Cn(I, R), n ∈ N, be the space of all n−times continuous

and differentiable functions from I to R. Let ψ ∈ Cn(I, R), be an increasing functions such
that ψ ′(t) ̸= 0 for all t ∈ I. Consider u : I → R be integrable function. The ψ−Riemann-
Liouville fractional integral of order α > 0, α ∈ R of the function u is defined as

J
α,ψ
0+ u(t) =

1
Γ(α)

∫t
0
ψ ′(ζ)(ψ(t) −ψ(ζ))α−1 u(ζ) dζ ,

and the ψ−Riemann-Liouville fractional derivative of order α > 0, α ∈ R of the function
u is defined as

D
α,ψ
0+ u(t) =

1
Γ(n−α)

(
1

ψ ′(t)

d

dt
)n

∫t
0
ψ ′(ζ)(ψ(t) −ψ(ζ))n−α−1 u(ζ) dζ ,

where n = [α] + 1 and [α] denotes the integral part of α.

3. Existence Theory

The proving of the existence of solution of the proposed system (1.4) will be obtained
under following assumptions:
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(A1) there exits qij ∈ R+ , i , j = 1, 2 such that

|F1(t, x1, x2) − F1(t,y1,y2)| ⩽
2∑
i=1

q1i |xi − yi|

and

|F2(t, x1, x2) − F2(t,y1,y2)| ⩽
2∑
i=1

q2i |xi − yi|,

for all t ∈ I and (x1, x2,y1,y2) ∈ R4;

(A2) there exits pij ∈ R+ , i, j = 1, 2 such that

|H1(t, x1, x2) −H1(t,y1,y2)| ⩽
2∑
i=1

p1i |xi − yi|

and

|H2(t, x1, x2) −H2(t,y1,y2)| ⩽
2∑
i=1

p2i |xi − yi|,

for all t ∈ I and (x1, x2,y1,y2) ∈ R4;

(A3) σ(P) < 1 and σ(Q) < 1, where Q = (qij)1⩽i,j⩽2 and P = (pij)1⩽i,j⩽2;

(A4) ∃ mi ∈ C(I), i = 1, 2 and there existsm∗
i ∈ R+, i = 1, 2 such thatm∗

i = ∥mi(t)∥∞, i =
1, 2 and

|U1(t,u, v)| ⩽ m1(t)

and
|U2(t,u, v)| ⩽ m2(t),

for all t ∈ I and (u, v) ∈ R2;

(A5) c∗[2 +M] < 1 where c∗ = max{p11,p12,p21,p22,q11,q12,q21,q22}, and
M = m∗

1
(ψ(b)−ψ(a))α

Γ(α+1) +m∗
2

(ψ(b)−ψ(a))β

Γ(β+1) .

Now, let V = C(I)×C(I).Define the generalized norm ∥.∥ : V → R2
+ as

∥(u, v)∥ =

(
∥u∥∞
∥v∥∞

)
, (3.1)

for all (u, v) ∈ V. Clearly (V , ∥.∥) is generalized Banach algebra. Let, d : V × V → R2
+ be

the generalized metric space induced by norm which is defined as

d((u1, v1), (u2, v2)) =

(
∥u1 − u2∥∞
∥v1 − v2∥∞

)
, (3.2)

for all (u1, v1), (u2, v2) ∈ V
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Define the operator A(u, v) = (A1(u, v),A2(u, v)) where the superposition operator
A1,A2 are defined as: [A1(u, v)](t) = H1(t,u(t), v(t)) and [A2(u, v)](t) = H2(t,u(t), v(t)).
Also, let the operator B(u, v) = (B1(u,u),B2(u, v)) where the superposition operator
B1,B2 are defined as: [B1(u, v)](t) = F1(t,u(t), v(t)) and [B2(u,yv](t) = F2(t,u(t), v(t)).
By the same argument, let K(x,y) = (K1(u, v),K2(u, v) where the superposition operators
C1,C2 are defined as:

[K1(u, v)](t) =
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α

Γ(α)
U1(s, ,u(s), v(s))ds

and

[K2(u, v)](t) =
∫t
a

ψ ′(s)(ψ(t) −ψ(s))β

Γ(β)
U2(s,u(s), v(s))ds.

Define T : V → V as:
T(u, v) = B(u, v) +A(u, v)K(u, v). (3.3)

Clearly, the system (1.4) has a solution if the operator T has a fixed point.

Lemma 3.1. Suppose that the conditions A1-A3 hold. Then A,B are contractive mappings.

Proof. Let (u1, v1), (u2, v2) ∈ V, then we have

|[A1(u1, v1)](t) − [A1(u2, v2)](t)| = |H1(t,u1(t), v1(t)) −H1(t,u2(t), v2(t))|

⩽ p11|u1(t) − u2(t)|+ p12|v1(t) − v2(t)|.
(3.4)

Therefore, we get

∥A1(u1, v1) −A1(u2, v2))∥∞ ⩽ p11 ∥u1 − u2∥∞ + p12 ∥v1 − v2∥∞. (3.5)

Similarly, we have

∥A2(u1, v1) −A2(u2, v2))∥∞ ⩽ p21 ∥u1 − u2∥∞ + p22 ∥v1 − v2∥∞. (3.6)

Hence, we obtain that

d(A(u1, v1),A(u2, v2)) ⪯2 P

(
∥u1 − u2∥∞
∥v1 − v2∥∞

)
. (3.7)

Since σ(P) < 1 then A is contraction map.
Therefore, we get

|[B1(u1, v1)](t) − [B1(u2, v2)](t)| = |F1(t,u1(t), v1(t)) − F1(t,u2(t), v2(t))|

⩽ q11|u1(t) − u2(t)|+ q12|v1(t) − v2(t)|.
(3.8)

Therefore, we get

∥B1(u1, v1) −B1(u2, v2))∥∞ ⩽ q11 ∥u1 − u2∥∞ + q12 ∥v1 − v2∥∞. (3.9)
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Similarly, we have

∥B2(u1, v1) −B2(u2, v2))∥∞ ⩽ q21 ∥u1 − u2∥∞ + q22 ∥v1 − v2∥∞. (3.10)

Hence, we obtain that

d(B(u1, v1),B(u2, v2)) ⪯2 Q

(
∥u1 − u2∥∞
∥v1 − v2∥∞

)
. (3.11)

Since σ(Q) < 1 then B is contraction map.

Lemma 3.2. Suppose that the conditions (A1)-(A5) hold. Then, there exists K∗ such that,
for every (u, v) ∈ V solution of the following system

u = λ B1(
u

λ
,
v

λ
) + λ A1(

u

λ
,
v

λ
)K1(u, v),

v = λ B2(
u

λ
,
v

λ
) + λ A2(

u

λ
,
v

λ
)K2(u, v),

(3.12)

for some λ ∈ (0, 1), we get ∥u∥∞ ⩽ K∗ and ∥v∥∞ ⩽ K∗.

Proof. Let (u, v) ∈ V be a solution of (3.12), then we have

u

λ
= B1(

u

λ
,
v

λ
) +A1(

u

λ
,
v

λ
)K1(u, v),

v

λ
= B2(

u

λ
,
v

λ
) +A2(

u

λ
,
v

λ
)K2(u, v),

(3.13)

Let û = u
λ and v̂ = v

λ . We prove for an estimate of ∥û∥∞ and ∥v̂∥∞. The results
obtained would be correct for ∥u∥∞ and ∥v∥∞. Then, we get

|û(t)| ⩽ |[B1(û, v̂)](t)|+ |[A1(û, v̂)(t) | | [K1(λû, λv̂)](t)|
⩽ |F1(t, û(t), v̂(t)) − F1(t, 0, 0)|+ |F1(t, 0, 0)|

+ (|H1(t, û(t), v̂(t)) −H1(t, 0, 0)|+ |H1(t, 0, 0)|)
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
|U1(s, λ û(s), λ v̂(s))|ds

⩽ q11|û(t)|+ q12|v̂(t)|+ |F1(t, 0, 0)|

+ (p11|û(t)|+ p12|v̂(t)|+ |H1(t, 0, 0)|)
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
|m1(s)|ds.

(3.14)
Let, c∗ = max{p11,p12,p21,p22,q11,q12,q21,q22}, we get

|û(t)| ⩽ c∗(|û(t)|+ |v̂(t)|)[1 +m∗
1

∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
ds]

+ |F1(t, 0, 0)|+ |H1(t, 0, 0)| m∗
1

∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
ds.

(3.15)
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Similarly, we have

|v̂(t)| ⩽ c∗(|û(t)|+ |v̂(t)|)[1 +m∗
2

∫t
a

ψ ′(s)(ψ(t) −ψ(s))β−1

Γ(β)
ds]

+ |F1(t, 0, 0)|+ |H1(t, 0, 0)| m∗
2

∫t
a

ψ ′(s)(ψ(t) −ψ(s))β−1

Γ(β)
ds..

(3.16)

Let, f∗ = max{∥F1(t, 0, 0)∥∞, ∥F2(t, 0, 0)∥∞} and h∗ = max{∥H1(t, 0, 0)∥∞, ∥H2(t, 0, 0)∥∞},
then, we have

|û(t)| ⩽ c∗(|û(t)|+ |v̂(t)|)[1 +m∗
1
(ψ(b) −ψ(a))α

Γ(α+ 1)
] + f∗ + h∗ m∗

1
(ψ(t) −ψ(s))α

Γ(α+ 1)
.

(3.17)
Also, we have

|v̂(t)| ⩽ c∗(|û(t)|+ |v̂(t)|)[1 +m∗
2
(ψ(b) −ψ(a))β

Γ(β+ 1)
] + f∗ + h∗ m∗

2
(ψ(t) −ψ(s))β

Γ(β+ 1)
.

(3.18)
Let, M = m∗

1
(ψ(b)−ψ(a))α

Γ(α+1) +m∗
2

(ψ(b)−ψ(a))β

Γ(β+1) , then by adding the last two equations we
get,

|û(t)|+ |v̂(t)| ⩽ c∗(|û(t)|+ |v̂(t)|)[2 +M] + 2f∗ + h∗ M. (3.19)

Let, L = c∗[2 +M] and K = 2f∗ + h∗M. Then, if L < 1, we get

|û(t)|+ |v̂(t)| ⩽
K

1 − L
. (3.20)

So, it is implies that

|u(t)|+ |v(t)| ⩽
|λ| K

1 − L
⩽

K

1 − L
= K∗. (3.21)

Thus, we get ∥u∥∞ ⩽ K∗ and ∥v∥∞ ⩽ K∗.

Lemma 3.3. Suppose that the conditions (A1)-(A5) hold. The operator K is completely
continuous.

Proof. The proof is done in 3 steps.
Step 1. K is continuous. Let {(un, vn)} be a sequence in V such that (un, vn) → (u, v) ∈
V as n → ∞. Then we have un → u ∈ C(I) and vn → v ∈ C(I) as n → ∞. So, foe all
t ∈ I, we get
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|[K1(un, vn)](t) − [K1(u, v)](t)|

= |

∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
U1(s,un(s), vn(s))ds−

∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
U1(s,u(s), v(s))ds|

⩽ |

∫t
a

ψ ′(s)(ψ(t) −ψ(s))α

Γ(α)
|U1(s,un(s), vn(s)) −U1(s,u(s), v(s)|ds

⩽
(ψ(t) −ψ(a))α

Γ(α+ 1)
∥U1(t, xn(t), vn(t)) −U1(t,u(t), v(t)∥∞

⩽
(ψ(b) −ψ(a))α

Γ(α+ 1)
∥U1(t, xn(t), vn(t)) −U1(t,u(t), v(t)∥∞

(3.22)
Thus, from the continuity of U1, we have ∥K1(un, vn) −K1(u, v)∥∞ → 0 as n → ∞. By
doing the same steps, we get

|[K2(un, vn)](t) − [K2(u, v)](t)| ⩽
(ψ(b) −ψ(a))β

Γ(β+ 1)
∥U2(t, xn(t), vn(t)) −U2(t,u(t), v(t)∥∞,

(3.23)
∥K2(un, vn) −K2(u, v)∥∞ → 0 as n→ ∞. Hence, we have ∥K(un, vn) −K(u, v)∥ → 0

as n→ ∞. Thus, K is continuous.
Step 2. Each bounded sets Ω in V , K(Ω) is uniformly bounded. Define, Ω = {(u, v) ∈
V : ∥u∥∞ ⩽ K∗, ∥v∥∞ ⩽ K∗}, where K∗ is defined in lemma 3.2. Let (u, v) ∈ Ω, then we
get

|[K1(u, v)](t)| ⩽
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
|U1(s,u(s), v(s)|)ds

⩽
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α

Γ(α)
|m1(s))|ds

⩽ m∗
1
(ψ(b) −ψ(a))α

Γ(α+ 1)
= b1.

(3.24)

similarly, we get

|[K2(u, v)](t)| ⩽
∫t
a

ψ ′(s)(ψ(t) −ψ(s))β−1

β(α)
|U2(s,u(s), v(s)|)ds

⩽
∫t
a

ψ ′(s)(ψ(t) −ψ(s))β

Γ(β)
|m2(s))|ds

⩽ m∗
2
(ψ(b) −ψ(a))β

Γ(β+ 1)
= b2.

(3.25)

Thus, we have

∥K(u, v)∥ ⪯1

(
b1
b2

)
. (3.26)

Hence, K(Ω) is uniformly bounded in V .
Step 3. K is equi-continuous. Let t1, t2 ∈ I such that t1 < t2, the we get
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|[K1(u, v)](t1) − [K1(u, v)](t2)|

⩽ |

∫t1

a

ψ ′(s)(ψ(t1) −ψ(s))
α−1

Γ(α)
U1(s,u(s), v(s)ds−

∫t2

a

ψ ′(s)(ψ(t2) −ψ(s))
α

Γ(α)
U1(s,u(s), v(s)ds

⩽ m∗
1 |

∫t1

a

ψ ′(s)(ψ(t1) −ψ(s))
α−1

Γ(α)
ds−

∫t1

a

ψ ′(s)(ψ(t1) −ψ(s))
α−1

Γ(α)
ds|

⩽ m∗
1 |
(ψ(t1) −ψ(1))α

Γ(α+ 1)
−

(ψ(t2) −ψ(a))
α

Γ(α+ 1)
|,

(3.27)
therefore,

|[K2(u, v)](t1) − [K2(u, v)](t2)|

⩽ |

∫t1

a

ψ ′(s)(ψ(t1) −ψ(s))
β−1

Γ(β)
U2(s,u(s), v(s)ds−

∫t2

a

ψ ′(s)(ψ(t2) −ψ(s))
β

Γ(β)
U2(s,u(s), v(s)ds

⩽ m∗
2 |

∫t1

a

ψ ′(s)(ψ(t1) −ψ(s))
β−1

Γ(β)
ds−

∫t1

a

ψ ′(s)(ψ(t1) −ψ(s))
β−1

Γ(β)
ds|

⩽ m∗
2 |
(ψ(t1) −ψ(1))β

Γ(β+ 1)
−

(ψ(t2) −ψ(a))
β

Γ(β+ 1)
|.

(3.28)
From the uniform continuity of ψ , then when t1 → t2, |[K1(u, v)](t1) − [K1(u, v)](t2)| → 0
and |[K2(u, v)](t1) − [K2(u, v)](t2)| → 0. Thus K is equi-continuous. So, it is implies that
K is compact. Thus, K : Ω→ V is completely continuous.

Theorem 3.4. Let the conditions (A1)-(A5) hold, and assume that σ(W) < 1 where

W =

(
b1p11 b2p12
b1p21 b2p22

)
+

(
q11 q12
q21 q22

)
,

such that (
b1
b2

)
⪰2 sup{∥K(u, v) : (u, v) ∈ Ω},

and Ω = {(u, v) ∈ V : ∥u∥∞ < K∗, ∥v∥∞ < K∗}. Then the system (1.4) has at least one
solution in V .

Proof. Since all the conditions of theorem 2.1 are satisfied. Then, the operator T has a
fixed point (u∗, v∗) ∈ V. This fixed point is the solution of the system (1.4).

4. Asymptotically stability analysis

(u, v) ∈ V is called an asymptotically stable solution of the system in the generalized
Banach algebra V (1.4) if ∀ ε < 0 , ∃ T(T = T(ε) > 0 such that for each t ⩾ T(ε) and each
(u∗, v∗) other solution of (1.4),

∥(u, v) − (u∗, v∗)∥ ⪯2 ε.

In the next theorem, we investigate the asymptotically stability analysis of the system
(1.4).
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Theorem 4.1. Under the conditions (A1)-(A5), the system (1.4) is asymptotically stable.

Proof. Let (u, v) ∈ V be a solution of (1.4) and let (u∗, v∗) is other solution of (1.4), then
we have

|u(t) − u∗(t)| ⩽ |F1(t,u(t), v(t)) − F1(t,u(t), v(t))|

+ |H1(t,u(t), v(t))
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
U1(s,u(s), v(s))ds

−H1(t,u∗(t), v∗(t))
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
U1(s,u∗(s), v∗(s))ds|

⩽ (q11 |u(t) − u∗(t)|+ q12 |v(t) − v∗(t)|)

+ |H1(t,u(t), v(t))
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
U1(s,u(s), v(s))ds

−H1(t,u(t), v(t))
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
U1(s,u∗(s), v∗(s))ds|

+ |H1(t,u(t), v(t))
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
U1(s,u∗(s), v ∗ (s))ds

− |H1(t,u∗(t), v∗(t))
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
U1(s,u∗(s), v∗(s))ds|

(4.1)

From the conditions (A1)-(A4), we get

|u(t) − u∗(t)| ⩽ c∗(|u(t) − u∗(t)|+ |v(t) − v∗(t)|)

+ |H1(t,u(t), v(t))|
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
|U1(s,u(s), v(s)) −U1(s,u∗(s), v∗(s))|ds

+ |H1(t,u(t), v(t)) −H1(t,u∗(t), v∗(t))|
∫t
a

ψ ′(s)(ψ(t) −ψ(s))α−1

Γ(α)
|U1(s,u∗(s), v ∗ (s))|ds

⩽ c∗(|u(t) − u∗(t)|+ |v(t) − v∗(t)|)

+ 4 m∗
1 (c∗(∥u∥∞ + ∥v∥∞) + |H1(t, 0, 0)|)

(ψ(b) −ψ(a))α

Γ(α+ 1)

+ c∗ m∗
1(|u(t) − u

∗(t)|+ |v(t) − v∗(t)|))
(ψ(b) −ψ(a))α

Γ(α+ 1)

⩽ c∗(1 +m∗
1
(ψ(b) −ψ(a))α

Γ(α+ 1)
)(|u(t) − u∗(t)|+ |v(t) − v∗(t)|) + 2 m∗

1 (2 K∗ c∗ + h∗)
(ψ(b) −ψ(a))α

Γ(α+ 1)
(4.2)
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Similarly, we have

|v(t) − v∗(t)| ⩽ |F2(t,u(t), v(t)) − F2(t,u(t), v(t))|

+ |H2(t,u(t), v(t))
∫t
a

ψ ′(s)(ψ(t) −ψ(s))β−1

β(α)
U2(s,u(s), v(s))ds

−H2(t,u∗(t), v∗(t))
∫t
a

ψ ′(s)(ψ(t) −ψ(s))β−1

Γ(β)
U2(s,u∗(s), v∗(s))ds|

⩽ c∗(1 +m∗
2
(ψ(b) −ψ(a))β

Γ(β+ 1)
)(|u(t) − u∗(t)|+ |v(t) − v∗(t)|)

+ 2 m∗
2 (2 K∗ c∗ + h∗)

(ψ(b) −ψ(a))β

Γ(β+ 1)

(4.3)

Thus, we obtain that

|u(t) − u∗(t)|+ |v(t) − v∗(t)| ⩽ c∗(2 +M)(|u(t) − u∗(t)|+ |v(t) − v∗(t)|) + 2 M (2 K∗ c∗ + h∗)

(4.4)
According to the condition (A5), it follows that

|u(t) − u∗(t)|+ |v(t) − v∗(t)| ⩽
2 M (2 K∗ c∗ + h∗)

1 − c∗(2 +M)
= ε. (4.5)

Hence, we have |u(t)−u∗(t)| ⩽ ε and |v(t)− v∗(t)| ⩽ ε, and (1.4) is asymptotically stable.

5. Applications and special cases

we present the following example, which indicate how the obtained results can be
used to particular problems.

5.1. An Example
Consider the following system

u(t) =
|u(t)|+ |v(t)|

4 + |u(t)|+ |v(t)|

+
t2 + u(t) + v(t)

te−t
2
+ 4

∫t
0

ψ ′(s)(ψ(t) −ψ(s))
1
2

Γ( 1
2)

(2s2 + e−s
2
)(u(s) + v(s))

20 + u(s) + v(s)
ds, t ∈ [0, 1]

v(t) =
t+ sin(|u(t)|+ |v(t)|)

4 + t2

+
1

(t+ 2)2 arctan(|v(t)|+ |u(t)|)

∫t
0

ψ ′(s)(ψ(t) −ψ(s))
2
3

Γ( 2
3)

sin(u(s) + v(s))
10 + s2 + s4 ds, t ∈ [0, 1].

(5.1)
Let ψ(t) = t2+t

2 . Here, we get

F1(t,u, v) =
|u|+ |v|

4 + |u|+ |v|
,
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F2(t,u, v) =
t+ sin(|u|+ |v|)

4 + t2 ,

H1(t,u, v) =
t2 + u+ v

te−t
2
+ 4

,

H2(t,u, v) =
1

(t+ 2)2)
arctan(|u|+ |v|),

U1(t,u, v) =
(2t2 + e−t

2
)(u+ v)

20 + u+ v
,

U2(t,u, v) =
sin(u+ v)

10 + t2 + t4 .

for all t ∈ [0, 1],u, v ∈ R. It is clear that all the maps F1, F2,H1,H2,U1 and U2 are continu-
ous. Furthermore, we have:

|F1(t,u1, v1) − F1(t,u2, v2)| ⩽
1
4
|u1 − u2|+

1
4
|v1 − v2|,

|F2(t,u1, v1) − F2(t,u2, v2)| ⩽
1
4
|u1 − u2|+

1
4
|v1 − v2|,

|H1(t,u1, v1) −H1(t,u2, v2)| ⩽
1
4
|u1 − u2|+

1
4
|v1 − v2|,

|H2(t,u1, v1) −H2(t,u2, v2)| ⩽
1
4
|u1 − u2|+

1
4
|v1 − v2|,

for all t ∈ [0, 1] and (u1,u2, v1, v2) ∈ R. It follows that:

P =

(1
4

1
4

1
4

1
4

)
,Q =

(1
4

1
4

1
4

1
4

)
.

Hence, we easily obtain σ(P) = 1
2 < 1 , σ(Q) = 1

2 < 1 and c∗ = 1
4 . Consequently, we

have m∗
1 = m∗

2 = 1
10 . Therefore, we get

|U1(t,u, v)| ⩽ m1(t) =
t

10

and
|U2(t,u, v)| ⩽ m2(t) =

1
10

.

Also, b1 = b2 ∼= 1
9 , so, we get

W =

(
b1p11 b2p12
b1p21 b2p22

)
+

(
q11 q12
q21 q22

)
=

( 5
18

5
18

5
18

5
18

)
.

It follows that: σ(W) = 5
9 < 1. Thus, the inequality c∗(2 +M) ∼= 2.56 < 1 be verified.

Hence, all the conditions from (A1)–(A5) are satisfied. From Theorem 3.4, we conclude
that the system (5.1) has at least one solution and this solution is asymptotic stable.
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5.2. Some special cases
The system (1.4) is very general fractional integral system. Consequently, the system

include the following special cases:
(1) Putting α = β = 1, then we have the following system:

u(t) = F1(t,u(t), v(t)) +H1(t,u(t), v(t))
∫t
a

U1(s,u(s), v(s))ds, t ∈ [a,b]

v(t) = F2(t,u(t), v(t)) +H2(t,u(t), v(t))
∫t
a

U2(s,u(s), v(s))ds, t ∈ [a,b].
(5.2)

(2) If F1(t,u, v) = f1(t,u), F1(t,u, v) = f2(t, v),H1(t,u, v) = g1(t, v),H2(t,u, v) =
g2(t,u),U1(t,u, v) = S1(t, v),U2(t,u, v) = S2(t,u) and ψ(t) = t, then we get the system
(1.3).

(3) Lettingψ(t) = t, then we get the following system of integral equations of Riemann-
Liouville kernel kind

u(t) = F1(t,u(t), v(t)) +H1(t,u(t), v(t))
∫t
a

(t− s))α−1

Γ(α)
U1(s,u(s), v(s))ds, t ∈ [a,b]

v(t) = F2(t,u(t), v(t)) +H2(t,u(t), v(t))
∫t
a

(t− s)β−1

Γ(β)
U2(s,u(s), v(s))ds, t ∈ [a,b].

(5.3)
(4) Letting ψ(t) = tγ,γ ∈ R+, then we get the following system of integral equations

of Erdely-Kober kernel kind

u(t) = F1(t,u(t), v(t)) +H1(t,u(t), v(t))
∫t
a

γsγ−1(tγ − sγ))α−1

Γ(α)
U1(s,u(s), v(s))ds, t ∈ [a,b]

v(t) = F2(t,u(t), v(t)) +H2(t,u(t), v(t))
∫t
a

γsγ−1(tγ − sγ)β−1

Γ(β)
U2(s,u(s), v(s))ds, t ∈ [a,b].

(5.4)
(5)Letting I = [1, e],ψ(t) = ln(t),γ ∈ R+, then we get the following system of weakly

singular integral equations of Hadamard kernel kind

u(t) = F1(t,u(t), v(t)) +H1(t,u(t), v(t))
∫t

1
ln(
t

s
)α−1 1

sΓ(α)
U1(s,u(s), v(s))ds, t ∈ [1, e]

v(t) = F2(t,u(t), v(t)) +H2(t,u(t), v(t))
∫t

1
ln(
t

s
)β−1 1

sΓ(β)
U2(s,u(s), v(s))ds, t ∈ [1, e].

(5.5)
Finally we can state the following results for the above special case

Theorem 5.1. Under the conditions (A1)-(A5), the the following system of integral equations
of Riemann-Liouville type has at least one asymptotically stable solution in V.

u(t) = F1(t,u(t), v(t)) +H1(t,u(t), v(t))
∫t
a

(t− s))α−1

Γ(α)
U1(s,u(s), v(s))ds, t ∈ [a,b]

v(t) = F2(t,u(t), v(t)) +H2(t,u(t), v(t))
∫t
a

(t− s)β−1

Γ(β)
U2(s,u(s), v(s))ds, t ∈ [a,b].

(5.6)
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Theorem 5.2. the following system of integral equations of Erdely Kober type has at least
one asymptotically stable solution in V,

u(t) = F1(t,u(t), v(t)) +H1(t,u(t), v(t))
∫t
a

γsγ−1(tγ − sγ))α−1

Γ(α)
U1(s,u(s), v(s))ds, t ∈ [a,b]

v(t) = F2(t,u(t), v(t)) +H2(t,u(t), v(t))
∫t
a

γsγ−1(tγ − sγ)β−1

Γ(β)
U2(s,u(s), v(s))ds, t ∈ [a,b].

(5.7)

Theorem 5.3. Under the conditions (A1)-(A5), the following system of weakly singular in-
tegral equations of Hadamard type has at least one asymptotically stable solution in V,

u(t) = F1(t,u(t), v(t)) +H1(t,u(t), v(t))
∫t

1
ln(
t

s
)α−1 1

sΓ(α)
U1(s,u(s), v(s))ds, t ∈ [1, e]

v(t) = F2(t,u(t), v(t)) +H2(t,u(t), v(t))
∫t

1
ln(
t

s
)β−1 1

sΓ(β)
U2(s,u(s), v(s))ds, t ∈ [1, e].

(5.8)

6. Conclusion

In this article, a nonlinear system of integral equation with ψ−kernels is considered
in generalized Banach algebras. We investigate the solvability of the proposed system via
generalized Leray-Schauder fixed point approach. The stability analysis of the proposed
system was studied. The reported results in this paper are recent and significantly con-
tribute to the existing literature on the subject. It was concluded that the proposed system
is very general and involves many special cases, we gave some of those special cases and
illustrative example.
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