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Abstract

The objective of this study is to examine the dynamic behavior of the fifth-order nonlinear equation
(FONLE) and its practical application in the field of applied mathematics. To achieve this, we first employ a
traveling wave transformation technique to convert the FONLE equation into a nonlinear ordinary differential
&
the exp(—¢(x)) method. These soliton solutions can be utilized in numerous areas of mathematical physics
and nonlinear sciences, including ocean engineering, optical fibers, plasma physics, applied mathematics, and
fluid dynamics. The techniques used in this study are applied to this model for the first time.

equation. Various exact soliton solutions of FONLE are then obtained using the < )—expansion method and

Keywords: (%;)—expansion method; exp(—¢(k)) method ; Nonlinear Differential equation; Solitary wave

solutions.

1. Introduction

Nonlinear phenomena occur in all areas of science, such as mathematics, physics,
chemistry, and engineering [1]. In most applications, nonlinear systems are modelled
by partial differential equations called nonlinear evolution equations (NLEEs) of much
interest are solutions in the shape of spatially-localized excitations. Many such excita-
tions are non-dispersive and non-dissipative waves. The configurations that are weak
or non-radiative and that preserve their shape as they propagate to significantly long
distances. Due to this special characteristic, these configurations are known as soli-
tons or solitary waves. Soliton-like solutions occur in diverse research areas, including
metamaterials, hydrodynamics, nuclear physics plasma physics, nonlinear optics, opti-
cal communications, and astrophysics [2, 3]. Many mathematicians utilized different
techniques to find the exact traveling wave solution such as the Sine-Gordon expansion
approach[5, 6], the Jacobi-elliptic technique [4], the homogeneous balance technique[9],
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the modified simple equation technique[7, 8], the Kudryashov technique [13], the auxil-
iary equation technique[10, 11], the exp-function technique[14, 25], the extended direct

algebraic technique[12], the extended tanh expansion technique [24], (%)-expansion

technique[19, 20], (g—;) -expansion technique [31], exp(—&(t)) technique [16], Auto-
Biacklund transformation [17], the Hirota’s bilinear approach [18], and many more.
The prime task of this research is to consider the following nonlinear water wave equation,

Vi (Xz t) + vy (X/ t) +C1vx (Xz 1) 4 CoVyxx (Xz t) 4+ c3vx (X/ t)vxx (X/ t) + C4V(X/ t)vxxx (X/ t)
+ C5Vxxxx (X, t) =0.
(1.1)

and examine the dynamics of its soliton through applying the (%) -expansion method and

exp(—¢(k)) method. In Eq. (1.1) ¢, ¢cp, c3, ¢4, c5 are the dispersion term and c3, c4 are the
non-linear terms. Many techniques have been applied to the NLWWE: W-shaped and other
soliton solutions of FONLE were obtained by using the Kudryashov technique [21, 22].
The approximate solutions of NLWWE were attained by utilizing the homotopy analysis
technique [23]. The stability analysis for the NLWWE was investigated by using a linear
stability scheme [25]. The solitary wave solutions of NLWWE were investigated by using
modified extended tanh-technique [26]. The exact solution of coupled KdV-Schrodinger
equations has been attained by utilizing the Kudryashov-expansion method [27]. By using
the unified method the traveling wave solution of the nonlinear fractional equation was at-
tained in [28]. Hyperbolic and periodic waves of nonlinear NLWWE were attained by uti-
lizing bilinear Backlund transformation [29]. The rogue wave solutions of the Boussinesq
equation were achie\/fed by employing Bell polynomial and Hirota’s bilinearization method

[30]. In the past (%) -expansion and exp(—¢(k)) method have been applied on different
models: The traveling wave solutions of Time-fractional Burgers equation were attained
by using (%)—expansion method [31]. The rational, periodic, and hyperbolic functions

of Classical Boussinesq equation were obtained by utilizing (g—;) -expansion method [32].

The variety of exact solutions of fractional mKdV equations were obtained by utilizing
exp(—¢(k)) method [16]. The solitary wave solutions Of Lakshmanan—Porsezian—-Daniel
(LPD) model were obtained by utilizing exp(—¢(k)) method [33]. The different struc-
tures of soliton solutions of perturbed Chen-Lee-Liu equation were attained by utilizing
exp(—®(k)) method[34]. The exact solutions of Gerdjikov—Ivanov equation were attained
by utilizing exp(—¢(x)) method [35].

In this paper we have used nonlinear differential equation with two different method to
obtained the variety of soliton solutions. In section(2) we are present the description of
methods. In section(3) the analysis of equation. In section(4) graphical representation.
At the end we are present the conclusion section(5).

2. Methodologies

Consider the NPDE is,
k(v, D¢v, Dyv, D2v,...) = 0. (2.1)
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Here, v = v(x, t) is a unknown function.
Suppose the travelling wave is,

v(x,t) =v(k), Kk = (x — pt), (2.2)

putting equation Eq. 2.2 into Eq. 2.1 then,

owv,v,v',v”, . )=o. (2.3)
2.1. <g—;) -expansion technique
Consider the equation,
N / n / -n
G G
V(k)=ao+ ) |an <(52> + by (GZ> ] . (2.4)
n=1

’ N\ 2
G G

Where 6; # 0,&; # 1 are integers and ag, an, and b,, are unknown constants which can
determined latter.
Where n =1,2,3,..N The Eq. (2.5) has three cases:

Case-11If {151 > 0,
G\  Ja <A1 cos VEB1K + Ay Sin\/£161|<> 2.6)
G2 )\ 81 \Azcos &Sk — Agsiny/E1d1k /) '
where A; and A; are arbitrary nonzero constants.
Case-2 If 151 < 0,

<G’>:_\/| 5161|<A1sinh(z (€187 Ik) + Aj cosh(2 5151|K)+A2> _—

G2 51 Aqsinh(21/] £101 [K) + A; cosh(2+/] £101 k) — Ao
Case-31If & =0,61 #0,

G\ Ai
(ez) - (_61(A1K+Az))' 28)

To obtain the three types of solution by putting the values of unknowns ag, a,, and by,
and the Eq. (2.6), Eq. (2.7), Eq. (2.8) into Eq. (2.4).

2.2. Exp(—d(k)) Technique
The equation is,
V(k) = og + g exp (—P(k)) + xaexp (=2 (k)) + ... + an exp (=N (k)) . (2.9

We determine the N by homogeneous balance technique,

!

¢ (k) = exp(—d(k)) + Arexp(d(k)) + A (2.10)



M. Shakeel / Dynamics of diverse nonlinear water waves to... 4

Different soliton solution mentioned below,
Case-1: If A2 —4A; > 0and A; # 0, then

SR
_ /A%—4A1tanh <A24/2\1(K+X)> — A,

d1(k) =In o, (2.11)
Case-2: If A2 —4A; >0and A; =0, and A, # 0, then
A
=— . 2.12
P2 (x) n<cosh(Az(K—i—x))+sinh(A2(K+x))—1> ( )
Case-3: If A7 —4A; < 0and A; # 0, then
\/4A; — A2 tanh <V 4A1‘§%(K+X’> — A,
$3(k) =In A, (2.13)
Case-4: If A% —4A1 =0, A1 #0, and A; # 0, then
—2As(k+x) +4
d4a(k) =In < . (2.14)
4 A3(k+X)
Case-5: If A2 —4A; =0, A; =0, and A, =0, then
bs5(k) =In(k+%). (2.15)

Now, by subsituting Eq. (2.9) and Eq. (2.10) into left hand side of Eq. (2.3), a polynomial
in exp(—¢(k)) have been attained. On solving the polynomial with the help of symbolic
computational software Mathematica, the exact solutions are obtained.
3. Dynamical analysis of FONLE
Consider the wave transformation is,
vix,t) =V(k), k=x—pt (3.1)

putting above relation into Eq. (1.1) then we get

1—p)V +cVV + eV + V'V + e,V + 5V =0. (3.2)
Integrating Eq. (3.2) once w.r.t. K

1 ’ " " ].
E(CS —cd)(V)+caVV +cV + 5cl(VJZ +(1—p)V+csVH =0. (3.3)

Where the constant of integration is zero.
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3.1. (%)-expansion technique and its Application

By homogeneous balance technique we get N = 2.
Inserting N = 2 in Eq. (2.4), then it become

!’ ! —1 7 2 ’ -2
G G G G
V(K) = Qo + aq <G2> +b1 <GZ) + ar <Gz> +b2 <G2> . (34)

Substituting Eq. (3.4) into Eq. (3.3) then we get following set of solution,
Set1

3
5Lb1\/a b151 Lb1512 Lbl\/a 2.2
_ = =20y by = 0 = 9216¢552€2 41,
ap + 2\/?1 a E,l =F 451% 1 1,92 + 4\/& P C5 1£1+
3 5 3 3
46081c582 &2 624 51&2 192 5,&2
o = L HO0BLsOIET  easity, ey = O2ROVOIEL 19215 VEiE]
by b by
(3.5)
Case 1If £151 > 0,
Vik) = < 5Lb1\/a> N <_b161> Q(Al cos/&181k + Ay sin \/E,lélK)
—\ 7 2V &1 o1 AQCOSMK—Alsin\/élélK
3
. & (A1 cosE1 01k + Ay s1n\/£161|<) N tb1 63
61 AzCOSMK—Alsln\/E,l&]K + 451%
(3.6)

2
Q(Al cos \/5161K+Azsin\/£161|<) N ( tb1v&1 >
01 ApcosvE101k — Aqsin/E161k 4/01

-2
i Aqcos+/E101K + Ap sin \/(Z_,lélK)
51 Az COS v/ 5,151K — Al sin \/((_,151K

Where k = x — pt
case 2 If £;5; < 0.

V(K) _ (:‘:5Lb1\/a) + (_blél) \/| 5151 A1 smh \/| 5,151 | +A1 COSh 2\/| E, 11K +A2
2V &1 &1 A1 sinh(2+/] £181 |k) + Aq cosh(2+/] £101 |K)
\/| £101 | (Al sinh(2+/] &€1871 |k) + A1 cosh(2+/] &181 |k) +A2 - Lblél7
81 Ajsinh(2y/[ £8; k) + Aq cosh(2y/] £181 [K) 45,1%
V& |(A1 sinh(24/] £181 |k) + Aq cosh(24/] £181 [k )+A2) n <3F Lbl\ﬁ)
81 Aqsinh(24/]&:81 [k) 4+ Aq cosh(24/] €181 [k) — A, 481

_V/IEB ] Arsinh(2y/ T8 k) + Ay cosh(2y/TEid k) + Az |
81 Aqsinh(2+/] 161 |k) + Aq cosh(2+/] £181 [k) — Aj

3.7

)
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Case-31Ifé1 =0,61 #0

(518 b1dq Aq Aq -1
V(k) = (jF 2VE ) + <_ & > <_51(A1K+A2)) o <_51(A1K+A2))

2 (3.8)
y pL <_A1>2+< tan) ( A1)2
451% 81(A1k +A2) 4./8 51(A1k + Ay) '
Set 2
5 3
3La1f Lalf 2.2 5761c507 &7
= =a,a ==+ =0,b, =0,p = 576¢5 1) =F— 2171
ap = N =a, a2 2V 2 p c501&1+1,c1 =F ™
3
312c62\/ 961c=82+/&;
c2 = —140c501&,¢3 = :I:L571&1,C4 = :FM.
ai a
(3.9

Case 11If £151 >0,

Vix) = < 3La1\ﬁ>+a Q(Alcos\/él(SlK—l—Azsin\/E,lélK) _i_(ital\/E)
B 25, YAV 81 Ay cos VEB1k — Ap sin v 01K 2V,

2
é AqcosvE101k + Apsiny/E101K
81 Apcos/E101k —AysinyE o1k |

(3.10)
case 2 If ;571 < 0.

V(K)_< 3La1f)+a ( \/W Aqsinh(24/] £18; [k) 4+ Aq cosh(24/] €181 [K) +A2)>

AV 81 A1 sinh(2+/] &€1061 |x) + A7 cosh(2+/] &£161 |k)
. < a1v/51 ) (_\/| £1811 Arsinh(2/[£:51 ) + Ay cosh(2/[E161 k) +As )2

2VE& b1 Aqsinh(24/] £181 [k) + Aqcosh(24/] £€101 [«) —Az)
(3.11)

Case-31Ifé&; =0,81 #0

3La1\/> A1 tapy/d1 Aq 2
WK)‘( 2./5, >+“1<‘61(A1K+31>+<i zr)< 61/\1+A2)> :

(3.12)
Set 3
2b251 b251 351 + 4b2C151 *bzcl + 192C5515,‘;’
aq=———)a=0,a ,b1 =0,by =by,p = ,Co = ,
0 E»l 1 2 = El 1 2 2 351 2 125’%
o d6estd o 12es]
3 = b2 r L4 = b2

(3.13)
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Case 11If £151 > 0,

2
Vi) <2b261) N (bzz’ﬁ) E(Al cos VE181K + Ag sin\/ilélk)
g &2 81 Apcos/E101k — Aqsin/E 81k

-2
by < /E,l A1cos\/élélK—FAzsm\/&SlK>

(3.14)

81 Ap oS \/E101K — Aq sin /101K
Case 2 If £151 < 0,
Vie) = <2b261> N (bzzs{) ( VIEB | Avsinh(2y[E51 k) + Ar cosh(2y/TEE1 ) + As )2
&1 &2 81 A1 sinh(2+/] £18; [k) + A1 cosh(2+/] £181 [k) —
( W(Alsmh ZWK —|—A1cosh(2ml< +A2 ) -

o1 Aqsinh(24/] £187 k) + A cosh(2+/] £181 [K) —

(3.15)

Case-31f&1 =0,01 #0

2b,8, bzzs%) < A1 >2 ( A )2
V(k) = — b | ———— . 3.16
(k) ( & >+< & A+ A)) 2\ s Akt A (316

Set 4

L4 5/2.3/2
(5 1) ava alf 1152¢587 %€
6 — V)
@0 = /02 = b1 =0,by =0,p = 1+1152ic58}¢3, ¢ = —— 11—,
’ Vo1 2= 6/ 2 P 50181, ¢1 = o
. 936¢55° > /E 288¢55°/2\/E
(3.17)

Case 11If £151 > 0,

V(k) = <W> +a <\/<§1(A1 COSV£151K+Azsin\/E,161K)>

Vo1 A cos /E181k — Aqsin/&;61k
(3.18)
2

+(a1\ﬁ> (\/&71 A1cos\/6161K+A2sin\/£161|<)> .

61 &1 (Az cos v/E101k — Aq sin /&1 01k
Case 2 If £151 < 0,
vig = (D avE | V&S] Arsinhy] & k) £ Arcosh(2y/TE18 k) +A2)
NG ! 51 A;sinh(2y/] €181 ) + A; cosh(24/] €,8; |K)

n (Cll\/a> 7\/| 5,161 |(A1 sinh(2\/| 5,151 |K) —I—Al COSh( | 5,151 +A2 ?
6v&1 81 Aysinh(24/]&:8; k) + Aq cosh(24/] €187 [k

(3 19)
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Case-31Ifé1 =0,61 #0

() avE Ar ave ALY
V(K)_<\/E T (_61(A1K+A2 )+<6f>< M> |

(3.20)
Set 5
. 5/2.3/2
) 576ic50;
Qg = 1(11\/7 , A2 = l(11\/71/ bl = 0/ b2 = 0/ p= 1 _576(:56%&%/ C1 = lC—E,/
251 2V ap
312ics557/2 96icss 2
Co = 52c5814,C3 = w5—1\/alc4 — _ 96iesd) " VEL
aq ap
(3.21)
Case 11If £151 > 0,
V(K) :<_ia1\/a> ta 51(AlCOS\/5151K+AZSiH\/El51K)
2/81 01 Apcos/E181k — Aqsin/E181k
(3.22)

2
+<u11\ﬁ> & AlCOS\/£151K+A25in\/£151K)
2VE 81 Apcos &0k —ArsinVE o1k |

Case 2 If £1851 <0,

V(K)—( 1a1\/»)+a \/W Aqsinh(24/] €187 [k) + A1 cosh( ZMKH—Az)
281 o Al sinh(2+/] £181 [k) + Aj cosh(2+/] £181 [K) — Az

2

+<ia1\/a> \/|E,151 Alsmh 2+/1 €181 |k) + A1 cosh(2+/] £101 K)+A2)
2vV& 81 A1 sinh(2,/] £101 [k) 4+ Aq cosh(2+/] £181 [K) — Ay )
(3.23)

Case-31Ifé; =0,61 #0

_ 1C11\/> A1 ial\/> Aq 2
WK)‘( 205, >+ 1<_51(A1K+A2 >+<2f>< 51 A1K+A2)> - (329
Set 6

. . 3/2,.5/2
ib1v/01 ib1vE&r 2.2 5761c50] “&;
— — , :O, :Olb = P :1—576 6 7 —/
aop N ai az 2 N P c5071&7,C1 = -
312ic5y/518 96icsy/518
b1 bl
(3.25)
Case 11If £:5; > 0,
—1
V(K) = <_ib1\/§> + by &1 (Al cos v/ &101K 4+ Ap sin v/ E,lélK)

2V& 01 ApcosvE181k — Aqsin/&181k (3.26)

+<ib1\/5> & A1Cos\/alélK—i-Azsin\/E,lélK) -
281 01 Apcos/E101k — Aqsiny/E181k
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Case 2 If £151 < 0,

—1
V(k) = <_lb1\/a> b \/| £101 ] A1 sinh(2+/] €161 |k) + A1 cosh(2+/| 161 |k) +A2
2VE ! o1 A1 sinh(2+/] €181 |k) + Aj cosh(2+/] €181 |k)

+<ib1\/a> _VTES | Ausinh(2y/ &5, 1) + Ay cosh(2,/ 5161|K)+A2) -~
2v/81 81 Apsinh(2y/]&18; [k) + Aq cosh(24/] €187 [k) — A '
(3.27)

Case-31Ifé; =0,01 #0

AR IR A1 ! ib1vEq A1 —2
Vix) = <_ 2VE >+b1 <_51(A1K+A2)> +< 281 ) ( 51 ( A1K+A2)) '

(3.28)
3.2. The exp(—d(k)) method and its Application
By homogeneous balance technique we attain N = 2.
Substituting N = 2 in Eq. (2.9), then it become
V(k) = op + g exp(—d(k)) + a2 exp(—2¢d(x)). (3.29)
Putting (3.29) into (3.3) then we attain the following set of solution,
Set1
12A1cs 12A5cs5 —4A1c4c5 + A%C4C5 + caCyq 12c5
Xy = — S0 == ,C1 = S0 =———,C3 =3¢y,
C4 C4 C5 C4
p = 16A%cs — 8A A5cs —4A1cy + Adcs + Adco + 1
(3.30)

Case-1:If A7 —4A; > 0and A; # 0, then

-1
_ VA0 )
<_12A1C5>+<_12A2C5> Az 4A1tanh< 2 ) Az +< 1205>

V(k) = 7,

Cq Cq

-2
JAZZ
_ /A%—4A1tanh <A24;\1(K+X)> — A,

2A5

(3.31)
Case-2:If A2 —4A; >0and A; =0, and A; #0,

B 12A1€5 12A2C5 Az 1205
ViK) = <_ e ) " (_ e ) (COSh(Az(K+X))+Sinh(A2(K+X))—1> " <_c4)

As 2
<cosh(A2(|< +x)) +sinh(Ax(k +%)) — 1> '

(3.32)
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Case-3:If A2 —4A; < 0and A; #0,

—1
_ A2 VAAIZAS (kX))
Vi) - <_12A1C5> . (12/\2(:5) VA A tanh< 2 > Az . (_ 1205>

2A;

Cq C4 C4

—2

A2
\/4A; — A2 tanh <W> — A,

2A;

(3.33)
Case-4:If A —4A; =0, A; #0, and By #0,

V() = <_12A1C5> N (_12A2c5> (2A2(K+X)+4>_1+ (_12C5) (ZAz(K+X)+4)_2
o C4 C4 A3(k+x) C4 A3(k+X) '

(3.34)
Case-5:If A2 —4A; =0, A; =0, and A, =0,
12A1¢ 12A,5c¢ _ 12¢ _
V(k) = (—”) + (—”) (k+x) "+ <—5> (k+x) 2. (3.35)
Cq Cq C4
Set 2
48A1cs 48A5cs Cy4 (16A105 — 4A%C5 + Cz) 48cs 1
= X1 = ;€1 =— s X = /C3:_7(13C4)/
C4 C4 4cs Cq 4

p =16A3%c5 —8A 1 AScs —4A1cy) + Ajcs + A3co + 1
(3.36)

Case-1:If A3 —4A; > 0 and A; # 0, then

-1
—/A2 -4 h( YA )
V() = <48Al<:5> N <48A2c5> Aj —4A; tan < 2 Az N <48€5>

2A5

C4 C4 C4

—2
SAZ_
— /A% —4A1 tanh (A2 4/21\1(K+X)> — Ay

2A5

(3.37)
Case-2:If A7 —4A; >0and A; =0, and A; #0,

. 48A1C5 48A205 A2 48C5
ViK) _< Cy4 )+< Cy4 ) <cosh(A2(|<—i—x))+sinh(A2(K+x))—1> +< Cy4 >

As 2
<cosh(A2(K +x)) +sinh(As(k +%)) — 1> '

(3.38)
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Case-3:If A2 —4A; < 0and A; #0,

-1
[4A. — A2 tanh VAAIZAG(k4x) A
V(K] (48A1C5) . (48A2c5> N ( 2 § N <4SC5>

2A5

C4 C4

—2
__ A2
\/4A; — AZtanh (‘W) —A;

2A;

(3.39)
Case-4:If A7 —4A; =0, A; #0, and A, #0,

[ 48Aqcs 48Ascs\ [ —2Ax(k+x)+4\ ' [48c5)\ [ —2Ax(k+x) +4\ 2
WK)‘( 3 )*( s )( AZ(x 4 x) ) +<c4>< Ak + x) > |

(3.40)
Case-5:If A2 —4A; =0, A; =0, and A, =0,
48A1c 48A5c _ 48c¢ _
V(K)z( ! 5>+< 2 5>(|<—i—x) 1—1—(5) (k+%) 2, (3.41)
Cq C4 Cq
Set 3
2c5 (2A1 + A3) 12A;¢5 cs (4A1c5 + A2 (—c5) +¢2) 12¢5
O(’O:_—/(Xl:_ ,Cl: 1“2:_71
C4 C4 Cs Cq
c3 =3¢y, p = 16A%C5 — 8A1A%C5 +4A ¢y + A%c — A%cz +1
(3.42)

Case-1:If A3 —4A; > 0 and A; # 0, then

_ Az VAT A0 |
V(k) = (_205 (2A1 +A§)> i <_ 12A205) A2 — 4As tamth ( § ) A2

B 2A5

Cq C4

-2
_ /a2 VASAA(k+x) |
N ( 1205> A3 —4A; tanh <2 > Ao

Cq 2A2

(3.43)
Case-2:If A2 —4A; >0and A; =0, and A, # 0,

(205 (271 + A2) 12A¢5 Az
V(k) = (—C4 + <_ s > <cosh(A2(|<+x))+sinh(A2(K+X))—1>

Sl & )
Cy4 cosh(As(k +x)) +sinh(Ax(k+x))—1/ °

(3.44)
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Case-3:If A2 —4A; < 0and A; #0,

—1
JAA, — AZtanh | YA 0 ) 4
2¢5 (2A1 + A2 12A 1=/ ( 2 2
V(K):(—CS( ! 2)>+<— 2C5>

2A5

Cq C4

-2
a2 VAAT—AS(k+X) .
. < 12C5> v/ 4A A2 tanh <2 ) Ao

C4 ZAZ
(3.45)
Case-4:If A —4A; =0, A; #0, and Ay #0,
2¢5 (2A1 + A2 _ —1
V(k) = <_C5(Cl+z)> n <_12/C\205> ( 2}/\\22((1 iX))H) N (_1ic5)
4 4 4
2T (3.46)

(—2A2(|< +x) +4>_2
A2(k+%) ’

Case-5:If A3 —4A; =0, A; =0, and A, =0,

2
V(k) = (—ZCS(ZA“LAZ)> + <—12A2C5) (x +x)71 + <—1i:5> (x +x)*2. (3.47)

C4 C4

4. Graphically Discussion

In this section, the graphical visualization of FONLE equation have been discussed.
The physical nature of the nonlinear model is illustrated by setting suitable values to
the arbitrary constants with the help of Mathematica. The Fig.(1) shows the singular-
periodic evolution; moreover, Fig.(2) represents the kink-soliton, and Fig.(3) is again
a singular-periodic wave. Fig.(4) represents the stable bright soliton, and Fig.( 5) and
Fig.( 6) are singular-bright type solitary waves and singular-kink solitary waves, respec-
tively. "Singular-periodic" usually refers to solutions that show both periodic behaviour
and singularities in nonlinear waves or wave equations. These solutions frequently oc-
cur in nonlinear systems, where intriguing dynamical phenomena are produced by the
interaction between periodicity and singular behaviour. Kink soliton, alternatively called
topological soliton or just kink, is a kind of solitary wave that appears in some nonlinear
field theories, especially in condensed matter physics and classical field theory. A smooth,
localised disturbance in a field that interpolates between two different equilibrium states
is what defines a kink. They frequently arise in systems whose symmetries spontaneously
break, where the field can assume many values in various spatial locations. One kind
of solitary wave that does not change form throughout propagation is the bright soliton,
which keeps its amplitude and shape constant. Usually, it is related to nonlinear wave
equations, especially when nonlinear optics and Bose-Einstein condensates are involved.
A balance between dispersion, which tends to spread out the wave, and nonlinearity,
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which tends to focus it, produces bright solitons. Singular bright soliton might be used
to describe soliton solutions that show solitary behaviour along with localised brilliant
characteristics, including solution discontinuities or sites of divergence. This might corre-
spond to a particular kind of nonlinear wave solution in which the nonlinearity produces
a localised amplitude or energy concentration, possibly together with singularities in the
solution profile.

Figure 1:
3D, 2D and contour singular-periodic solitary wave shape of Eq. (3.6) when &; = 0.1, A1 =
0.5,A, =0.02,b; =0.2,61 =0.5,c5 =0.1

Figure 2:
2D and 3D kink solitary wave shape of Eq. (3.11) when &; = 0.02,A1 =4,A, = —5,a; =
0.2,b; =0.05,5; =0.5,c5 =4

Figure 3:
2D and 3D singular-periodic solitary wave shape of Eq. (3.14) when & = 0.5,A1 =1,A; =
2, C1 = 03, bz = 0.2, 51 = 0.2, Cs; = —0.2

Figure 4:
2D and 3D bright solitary wave shape of Eq. (3.37) whenx = —3, A1 = 0.01,¢c; =0.5,A; =
1,c4 = 0.02,c5 = —0.05

Figure 5:
2D and 3D singular-bright solitary wave shape of Eq. (3.38) when x = 1.5,A1 = 0,¢cy =
—0.8, A2 =2,¢c4 = 0.05,¢c5 =0.2

Figure 6:
2D and 3D singular-kink solitary wave shape of Eq. (3.39) when x = —0.05,A1 = 1.5,¢, =
—0.8, A = 0.5,¢c4 = —0.05,¢c5 = —0.2
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5. Conclusion

In this article, exact solutions for the FONLE equation are symbolically attained by

using (%)—expansion method and the exp(—¢(k)) method. The singular-kink, singular-

periodic and bright solitary waves are obtained by using the given methods. These solu-
tions help us to acknowledge complex physical phenomena in applied mathematics and
physics. These methods can be utilized to obtain localized wave solutions for different
nonlinear water wave equations in mathematics, engineering and physics. The outcomes
of the research could contribute to a better understanding of the physical relevance of the
model under investigation as well as other nonlinear models that are often used in the
research of optical fibers, quantum field theory, and other related topics. At the end, we
have successfully analyze the physical phenomena of FONEL equation through the 2D and
3D graphs.
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