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Abstract

Recently, Gohar et al. introduced a novel, local, and well-behaved fractional calculus. It possesses all the
classical properties, and Its locality imposes simplicity and accuracy in modeling fractional order systems. In
this article, we further develop the definitions and extend the classical properties of Gohar fractional calculus
to address some of the open problems in Calculus. The fractional Gronwall’s integral inequality, Taylor power
series expansion, and Laplace transform are defined and applied to overcome some of the limitations in the
classical integer-order calculus. The fractional Laplace transform is applied to solve Bernoulli-type logistic
and Bertalanffy nonlinear fractional differential equations, and the criteria under which it can be applied to
solve linear differential equations are investigated.

Keywords: Gohar Fractional Calculus, Left and Right Gohar Fractional Derivatives, Left and Right Gohar
Fractional Integrals, Gohar Fractional Power Series Expansion, Gohar Fractional Laplace Transform.

1. Introduction

Over the last two decades, the impact of fractional calculus in both theoretical and
practical domains of science and engineering has grown substantially [1-3]. The dynam-
ical behaviors can be more precisely modeled and investigated within the framework of
fractional calculus, as fractional-order models of dynamical systems retain the memory of
their earlier states [4], thereby offering a more accurate and realistic description of their
dynamical behavior. Until recently, many real-world applications of fractional calculus
have been confined to the well-known Riemann-Liouville and Caputo fractional deriva-
tives [5]. While these fractional derivatives offer certain desirable advantages, such as
memory storage and hereditary effects in natural phenomena, their "non-local" integral
definitions, which involve weakly singular kernels, give rise to theoretical limitations and
computational complexities. Among these limitations, we highlight their failure to satisfy
some basic properties such as the product rule, quotient rule, and chain rule. In addition,
they do not meet Rolle’s theorem or the mean value theorem.
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Beyond these limitations, A. A. Gohar et al.[6] have recently introduced a novel,
simple, and well-behaved fractional calculus that preserves all the aforementioned ba-
sic properties and theorems, which makes it a promising mathematical tool for modeling
fractional-order systems. Some functions are not differentiable in the classical sense, while
others do not have Taylor power series expansions over the neighborhood of certain points.
However, as we shall see, all of these constraints can be broken within the context of Go-
har fractional calculus. In this article, we aim to develop new definitions and properties
of Gohar fractional calculus to fill in some gaps in the integer-order Calculus and broaden
its scope of application.

The article is organized as follows: In Section (2), the left and right Gohar fractional
derivatives and integrals of higher fractional orders (α > 1) are defined, the sequential
fractional derivative is introduced, and the Gronwall integral inequality is extended into
the Gohar fractional domain. Furthermore, the relationship between Gohar and Riemann-
Liouville fractional integrals is examined, and the interaction between Gohar fractional
derivatives and integrals is discussed. Finally, section (2) concludes with the partial Gohar
fractional derivative of a function with several variables. In Section (3), the fractional
power series expansion is defined, and the series expansions for some functions that do
not have Taylor power series expansion in classical calculus are obtained. In Section (4),
the Gohar fractional Laplace transform is defined and applied to solve the Bernoulli-type
logistic and Bertalanffy nonlinear fractional differential equations. Furthermore, the Valid-
ity of applying the Gohar fractional Laplace transform to solve linear fractional differential
equations is investigated and discussed in detail.

2. Definitions, theorems, and further properties

2.1. Gohar fractional derivatives
Definition 2.1.1. The left Gohar fractional derivative of a function f : [a,∞) → R of order
0 < α ⩽ 1 denoted by Ga

αf(x), is defined by

Ga
αf(x) = lim

∆x→0

1
∆x

[
f

(
x+ ln

(
1 +∆x

Γ(η)

Γ(η−α+ 1)
(x− a)−α

)(x−a)
)
− f(x)

]
, (2.1)

and the “right” Gohar fractional derivative of a function f : (∞,b] → R of order 0 < α ⩽ 1
denoted by bGαf(x), is defined by

bGαf(x) = lim
∆x→0

1
∆x

[
f

(
x+ ln

(
1 +∆x

Γ(η)

Γ(η−α+ 1)
(b− x)−α

)(b−x)
)
− f(x)

]
, (2.2)

for η ∈ R+.

If f : [a,∞) → R is Ga
α-differentiable on (a,∞), and lim

x→a+
Ga

αf(x) exists, then

Ga
αf(a) = lim

x→a+
Ga

αf(x). Similarly, If f : (−∞,b] → R is bGα-differentiable on (−∞,b),

and lim
x→b−

bGαf(x) exists, then bGαf(b) = lim
x→b−

bGαf(x).

For a = 0 we write Gαf(x) to denote the Gohar fractional derivative of f.
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Lemma 2.1.1. Let f : [a,∞) → R and g : (−∞,b] → R be differentiable functions on (a,∞)
and (−∞,b), respectively. Then we have

Ga
αf(x) =

Γ(η)

Γ(η−α+ 1)
(x− a)1−αf ′(x), (2.3)

bGαg(x) = −
Γ(η)

Γ(η−α+ 1)
(b− x)1−αg ′(x), (2.4)

Proof. With the aid of Maclaurin series expansion for the logarithmic function

ln
(

1 +∆x
Γ(η)

Γ(η−α+ 1)
(x− a)−α

)
= ∆x

Γ(η)

Γ(η−α+ 1)
(x− a)−α +O(∆x2), (2.5)

we have

Ga
αf(x) = lim

∆x→0

1
∆x

[
f

(
x+∆x

Γ(η)

Γ(η−α+ 1)
(x− a)1−α +O(∆x2)

)
− f(x)

]
,

and the result (2.3) is obtained with the substitution h = ∆x
Γ(η)

Γ(η−α+1)(x − a)
1−α +

O(∆x2). The relation for the right derivative (2.4) can be obtained by following the same
argument.

Corollary 2.1.1. Assume that f,φ : [a,∞) → R are Ga
α-differentiable functions on (a,∞).

If f is differentiable and

Ga
αf(x) =

Γ(η)

Γ(η−α+ 1)
(x− a)1−αφ(x), (2.6)

then
φ(x) = f ′(x),∀ x > a.

Proof. The result is a direct consequence of (2.3).

We define the “left” nth-sequential Gohar fractional derivative of order 0 < α ⩽ 1 as

G
a(n)
α f(x) = Ga

αG
a
αG

a
α · · ·Ga

α︸ ︷︷ ︸
n-times

f(x), (2.7)

and the “right” nth-sequential Gohar fractional derivative of order 0 < α ⩽ 1 as

bG
(n)
α f(x) = bGb

αG
b
αGα · · ·bGα︸ ︷︷ ︸
n-times

f(x). (2.8)

Definition 2.1.2. For a ∈ (n,n+ 1],n ∈ Z+ and β = α− n. The “left” Gohar fractional
derivative of the n times differentiable function f : [a,∞) → R of order α, denoted by
Ga
αf(x), is defined by

Ga
αf(x) = G

a
βf

(n)(x), (2.9)
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and the “right” Gohar fractional derivative of the n times differentiable function
f : (−∞,b] → R of order α, denoted by bGαf(x), is defined by

bGαf(x) = (−1)n+1bGβf
(n)(x). (2.10)

If f : [a,∞) → R is Ga
α-differentiable on (a,∞), and lim

x→a+
Ga
αf(x) exists, then

Ga
αf(a) = lim

x→a+
Ga
αf(x). Similarly, If f : (−∞,b] → R is bGα-differentiable on (−∞,b),

and lim
x→b−

bGαf(x) exists, thenbGαf(b) = lim
x→b−

bGαf(x).

Now, let us extend Lemma (2.1.1) for α ∈ (n,n+ 1],n ∈ Z+.

Lemma 2.1.2. Let f : [a,∞) → R and g : (−∞,b] → R be differentiable functions on (a,∞)
and (−∞,b), respectively. Then for a ∈ (n,n+ 1],n ∈ Z+ and β = α−n we have

Ga
αf(x) =

Γ(η)

Γ(η−α+n+ 1)
(x− a)n+1−αf(n+1)(x), (2.11)

bGαg(x) = (−1)n
Γ(η)

Γ(η−α+n+ 1)
(b− x)n+1−αg(n+1)(x). (2.12)

Proof. The results are obtained by substituting (2.3) and (2.4) into (2.9) and (2.10),
respectively.

For α = n + 1, (2.11) and (2.12) reduce to Ga
αf(x) = f(n+1)(x) and bGαg(x) =

(−1)ng(n+1)(x), respectively.

Theorem 2.1.1. Let f,g : [a,∞) → R be Ga
α-differentiable functions on (a,∞). Then for

x > a, g(x) ̸= 0 we have

Ga
α(f ◦ g)(x) =

Γ(η−α+ 1)
Γ(η)

[(g(x) − a)α−1Ga
αf(g(x))G

a
αg(x)]. (2.13)

Proof. Since f and g are Ga
α-differentiable functions on (a,∞). Then their composition

f ◦ g is Ga
α-differentiable on (a,∞) and its left Gohar fractional derivative is given by

Ga
α(f ◦ g)(x) = lim

∆x→0

1
∆x

[
(f ◦ g)(x+ ln

(
1 +∆x

Γ(η)

Γ(η−α+ 1)
(x− a)−α

)(x−a)

− (f ◦ g)(x)

]

= lim
∆x→0

1
∆x

[
(f ◦ g)

(
x+∆x

Γ(η)

Γ(η−α+ 1)
(x− a)−α +O(∆x2)

)
− (f ◦ g)(x)

]
,

where we used the Maclaurin series expansion of the logarithmic function (2.5).

By taking ξ = x+∆x
Γ(η)

Γ(η−α+1)(x− a)
−α +O(∆x2), with the aid of the continuity of g,

we proceed as follows

Ga
α(f ◦ g)(x) =

Γ(η)

Γ(η−α+ 1)
(x− a)1−α

(
lim
ξ→x

f(g(ξ)) − f(g(x))

ξ− x

)
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=
Γ(η)

Γ(η−α+ 1)
(x− a)1−α

(
lim

g(ξ)→g(x)

f(g(ξ)) − f(g(x))

g(ξ) − g(x)

)
·
(

lim
ξ→x

g(ξ) − g(x)

ξ− x

)
=
Γ(η−α+ 1)

Γ(η)
(g(x) − a)α−1 ·

(
Γ(η)

Γ(η−α+ 1)
(g(x) − a)1−α lim

g(ξ)→g(x)

f(g(ξ)) − f(g(x))

g(ξ) − g(x)

)
·
(

Γ(η)

Γ(η−α+ 1)
(x− a)1−α lim

ξ→x

g(ξ) − g(x)

ξ− x

)
=
Γ(η−α+ 1)

Γ(η)
[(g(x) − a)α−1Ga

αf(g(x))G
a
αg(x)].

Theorem 2.1.2. Let f : [a,∞) → R be a non-constant two times differentiable function on
(a,∞) and α,β ∈ (0, 1] such that α+β ∈ (1, 2]. Then

Ga
αG

a
βf(x) =

Γ(η)

Γ(η−β+ 1)

[
Γ(η− (α+β) + 2)
Γ(η−α+ 1)

Ga
α+βf(x) + (1 −β)(x− a)−βGa

αf(x)

]
.

(2.14)

Proof. With the aid of (2.3) and the Gohar fractional product rule in [6], we have

Ga
αG

a
βf(x) = G

a
α

(
Γ(η)

Γ(η−β+ 1)
(x− a)1−βf ′(x)

)

=
Γ(η)

Γ(η−α+ 1)Γ(η−β+ 1)
(x− a)1−α d

dx

{
Γ(η)

Γ(η−β+ 1)
(x− a)1−βf ′(x)

}
=

[Γ(η)]2

Γ(η−α+ 1)Γ(η−β+ 1)
(x− a)1−α[(x− a)1−βf ′′(x) + (1 −β)(x− a)−βf ′(x)]

=
Γ(η)Γ(η− (α+β) + 2)
Γ(η−α+ 1)Γ(η−β+ 1)

(
Γ(η)

Γ(η− (α+β) + 2)
(x− a)2−(α+β)f ′′(x)

)
+

Γ(η)

Γ(η−β+ 1)
(1 −β)(x− a)−β

(
Γ(η)

Γ(η−α+ 1)
(x− a)1−αf ′(x)

)
=

Γ(η)

Γ(η−β+ 1)

[
Γ(η− (α+β) + 2)
Γ(η−α+ 1)

Ga
α+βf(x) + (1 −β)(x− a)−βGa

αf(x)

]
.

Theorem (2.1.2) reveals the non-commutativity of the Gohar fractional operator for α ̸=
β, as we can obviously see that

Ga
βG

a
αf(x) =

Γ(η)

Γ(η−α+ 1)

[
Γ(η− (α+β) + 2)
Γ(η−β+ 1)

Ga
α+βf(x) + (1 −α)(x− a)−αGa

βf(x)

]
̸= Ga

αG
a
βf(x).

Also, it is obvious that Ga
αG

a
βf(x) ̸= Ga

α+βf(x) for α,β ∈ (0, 1] and the equality holds for
0 < α ⩽ 1,β = 1.
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In the following definition, we introduce the partial derivative of a function of several
variables in the Gohar fractional sense; such a derivative is useful for modeling a wide variety
of physical phenomena via partial fractional differential equations

Definition 2.1.3. Let f : Rn → R be a function of n variables x1, x2, x3, . . . , xn. The partial
Gohar fractional derivative of f of order 0 < α ⩽ 1 with respect to the variable xk, denoted
by Gα:xk

f, is defined by

Gα:xk
f = lim

h→0

1
h

[
f

(
x1, . . . , xk−1, xk + ln

(
1 + h

Γ(η)

Γ(η−α+ 1)
x−α
k

)xk

, xk+1, . . . , xn

)
− f(x1, . . . , xn)

]
,

(2.15)

where 1 ⩽ k ⩽ n, n ∈ N; η ∈ R+.

Lemma 2.1.3. Let f : Rn → R be a function of n variables x1, x2, x3, . . . , xn whose first
partial derivative ∂f

∂xk
, 1 ⩽ k ⩽ n exists and continuous over D ⊂ Rn. Then

Gα;xk
f(x1, x2, . . . , xk, . . . , xn) =

Γ(η)

Γ(η−α+ 1)
x1−α
k

∂

∂xk
f(x1, x2, . . . , xk, . . . , xn). (2.16)

Proof. With the aid of Maclaurin series expansion for the logarithmic function (2.5), we
have

Gα;xk
f = lim

h→0

1
h

[
f

(
x1, . . . , xk−1, xk + h

Γ(η)

Γ(η−α+ 1)
x1−α
k +O(h2), xk+1, . . . , xn

)
− f(x1, . . . , xn)

]
,

and the result follows directly by taking ϵ = h
Γ(η)

Γ(η−α+1)x
1−α
k +O(h2).

2.2. Gohar fractional integrals
Definition 2.2.1. The “left” Gohar fractional integral of a function f : [a,∞) → R of order
0 < α ⩽ 1, denoted by Tα

af(x), is defined by

Tα
af(x) =

Γ(η−α+ 1)
Γ(η)

∫x
a

f(t)
dt

(t− a)1−α
,η ∈ R+, (2.17)

and the “right” Gohar fractional integral of f : (−∞,b] → R of order 0 < α ⩽ 1, denoted
by bT

αf(x), is defined by

bT
αf(x) =

Γ(η−α+ 1)
Γ(η)

∫b
x

f(t)
dt

(b− t)1−α
,η ∈ R+. (2.18)

Theorem 2.2.1 (Fundamental theorem of Gohar fractional calculus). . Let f : [a,∞) → R

be a continuous function. Then for x > a we have

Ga
αT

α
af(x) = f(x), (2.19)
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Tα
aG

a
αf(x) = f(x) − f(a), (2.20)

and for the continuous function f : (−∞,b] → R we have

bGαbT
αf(x) = f(x), (2.21)

bT
αbGαf(x) = f(x) − f(b), (2.22)

for 0 < α ⩽ 1,η ∈ R+.

Proof. In view of (2.17) and (2.3), we have

Ga
αT

α
af(x) = G

a
α

(
Γ(η−α+ 1)

Γ(η)

∫x
a

f(t)
dt

(t− a)1−α

)
=

Γ(η)

Γ(η−α+ 1)
(x− a)1−α d

dx

(
Γ(η−α+ 1)

Γ(η)

∫x
a

f(t)
dt

(t− a)1−α

)
= f(x),

Tα
aG

a
αf(x) =

Γ(η−α+ 1)
Γ(η)

∫x
a

Ga
αf(t)

dt

(t− a)1−α

=
Γ(η−α+ 1)

Γ(η)

∫x
a

Γ(η)

Γ(η−α+ 1)
(t− a)1−αf ′(t)

dt

(t− a)1−α
= f(x) − f(a).

In a similar manner we can prove the other two relations for the right fractional deriva-
tives and integrals.

Definition 2.2.2. The Gohar fractional exponential function Eaα,η : [a,∞) → R, is defined
by

Eaα,η(λ, x) = exp
(
λ · Γ(η−α+ 1)

Γ(η)
· (x− a)

α

α

)
, (2.23)

where λ ∈ R, 0 < α ⩽ 1,η ∈ R+.

From the above definition we conclude that E0
1,η(λ, x) = eλx, from which we obtain

the hyperbolic sine and cosine functions as follows:

sinh(x) =
1
2
[E0

1,η(λ, x) − E0
1,η(−λ, x)] and cosh(x) =

1
2
[E0

1,η(λ, x) + E0
1,η(−λ, x)].

Definition 2.2.3. A function f : [a,∞) → R is said to be Gohar exponentially bounded if
it meets the following inequality

|f(x)| ⩽ Λ · Eaα,η(λ, x), ∀x ∈ [a,∞), (2.24)

where 0 < α ⩽ 1 and λ,Λ,η ∈ R+.

Integral inequalities are essential for the qualitative analysis of solutions to differential
and integral equations. By extending the Gronwall integral inequality into the Gohar frac-
tional domain, we get a mathematical tool for analyzing the stability of Gohar fractional
systems.
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Lemma 2.2.1. Let φ be a non-negative, continuous function over x ∈ [a,b) for b ⩽ ∞, and
λ,µ be non-negative constants such that:

φ(x) = λ+ µ · Γ(η−α+ 1)
Γ(η)

∫x
a

φ(t)
dt

(t− a)1−α
. (2.25)

Then
φ(x) ⩽ λ · Eaα,η(µ, x). (2.26)

Proof. Let us define Q(x) = λ+ µ · Γ(η−α+1)
Γ(η)

∫x
aφ(t)

dt
(t−a)1−α = λ+ µTα

aφ(x), such that
Q(a) = λ and Q(x) ⩾ φ(x),∀x ∈ [a,b). Then

Ga
αQ(x) − µQ(x) = µφ(x) − µQ(x) ⩽ µφ(x) − µφ(x) = 0.

Multiplying both sides by the Gohar fractional exponential function Eaα,η(−µ, x), and ap-
plying the product rule in [8], we get

Ga
α

(
Eaα,η(−µ, x)Q(x)) −Q(x)Ga

α(E
a
α,η(−µ, x)

)
− µQ(x)Eaα,η(−µ, x) ⩽ 0.

Provided that Ga
αE

a
α,η(−µ, x) = −µEaα,η(−µ, x), the inequality above reduces to

Ga
α

(
Eaα,η(−µ, x)Q(x)

)
⩽ 0,

and (2.20) implies that

Tα
aG

a
α

(
Eaα,η(−µ, x)Q(x)

)
= Eaα,η(−µ, x)Q(x)−Eaα,η(−µ,a)Q(a) = Eaα,η(−µ, x)Q(x)−λ ⩽ 0,

which implies that

φ(x) ⩽ Q(x) ⩽
λ

Eaα,η(−µ, x)
= λ · Eaα,η(µ, x).

The next Definition extends the left and right Gohar fractional integrals to higher frac-
tional orders α ∈ (n,n+ 1],n ∈ Z+.
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Definition 2.2.4. The “left” Gohar fractional integral of f : [a,∞) → R of order α ∈
(n,n+ 1],n ∈ Z+, denoted by Tα

af(x), is defined by

Tα
af(x) =

Γ(η−β+ 1)
Γ(η)

In+1
a

(
(x− a)β−1f(x)

)
=
Γ(η−β+ 1)
Γ(η)Γ(n+ 1)

∫x
a

(x− t)nf(t)
dt

(t− a)1−β
,

(2.27)
and the “right” Gohar fractional integral of f : (−∞,b] → R of order α ∈ (n,n+ 1],n ∈
Z+, denoted by bT

α , is defined by

bT
αf(x) =

Γ(η−β+ 1)
Γ(η)

bI
n+1 ((b− x)β−1f(x)

)
=
Γ(η−β+ 1)
Γ(η)Γ(n+ 1)

∫b
x

(t−x)nf(t)
dt

(b− t)1−β
,

(2.28)
where η ∈ R+,β = α− n, Iαa and bI

α are the “left” and “right” Riemann-Liouville frac-
tional integrals [7], of order α > 0, respectively, defined by

Iαaf(x) =
1
Γ(α)

∫x
a

f(t)
dt

(x− t)1−α
, (2.29)

bI
αf(x) =

1
Γ(α)

∫b
x

f(t)
dt

(t− x)1−α
. (2.30)

Notice that if α = n+ 1, then β = 1 and we have

Tn+1
a f(x) =

1
Γ(n+ 1)

∫x
a

(x− t)nf(t)dt, (2.31)

bT
n+1f(x) =

1
Γ(n+ 1)

∫b
x

(t− x)nf(t)dt, (2.32)

which is, via Cauchy formula, the (n+ 1) times iterative integrals of f. It is worth men-
tioning the effect of the Q operator on the left Riemann-Liouville fractional integral:
QIαaf(x) = bI

αQf(x). Accordingly, by means of (2.27) we get

QTα
af(x) =

Γ(η−β+ 1)
Γ(η)

Q
(
In+1
a

(
(x− a)β−1f(x)

))
=
Γ(η−β+ 1)

Γ(η)
bI

n+1 ((b− x)β−1Qf(x)
)

= bT
α(Qf(x)).

(2.33)

The following semigroup property relates the Gohar fractional integral operators Tα
aT

β
a

and Tα+β
a .

Theorem 2.2.2. Assume that f : [a,∞) → R is a function and α,β ∈ (0, 1] such that
α+β ∈ (1, 2]. Then for x > a we have

Tα
aT

β
af(x) =

Γ(η−β+ 1)
βΓ(η)

·

{
(x− a)βTα

af(x) + Γ(η−α+ 1)

[
Tα+β

a f(x)

Γ(η− (α+β) + 2)
−

(x− a)

Γ(η)

∫x
a

f(t)
dt

(t− a)2−(α+β)

]}
.

(2.34)
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Proof. With the fact that

Tα+β
a f(x) =

Γ(η− (α+β) + 2)
Γ(η)

I2a
(
(x− a)α+β−2f(x)

)
=
Γ(η− (α+β) + 2)

Γ(η)

∫x
a

(x− t)f(t)
dt

(t− a)2−(α+β)
,

we interchange the order of integrals to get

Tα
aT

β
af(x) =

Γ(η−α+ 1) · Γ(η−β+ 1)
[Γ(η)]2

∫x
a

(∫s
a

f(t)
dt

(t− a)1−α

)
ds

(s− a)1−β

=
Γ(η−α+ 1) · Γ(η−β+ 1)

[Γ(η)]2

∫x
a

f(t)

(∫x
t

ds

(s− a)1−β

)
dt

(t− a)1−α

=
Γ(η−α+ 1) · Γ(η−β+ 1)

[Γ(η)]2

∫x
a

f(t)

[
(x− a)β

β
−

(t− a)β

β

]
dt

(t− a)1−α

=
(x− a)β

β
· Γ(η−β+ 1)

Γ(η)
Tα
af(x) +

Γ(η−α+ 1) · Γ(η−β+ 1)
βΓ(η)

·

[
Tα+β

a f(x)

Γ(η− (α+β) + 2)
−

(x− a)

Γ(η)

∫x
a

f(t)
dt

(t− a)2−(α+β)

]

=
Γ(η−β+ 1)
βΓ(η)

·
[
(x− a)βTα

af(x) + Γ(η−α+ 1)
Tα+β

a f(x)

Γ(η− (α+β) + 1)

−
(x− a)

Γ(η)

∫x
a

f(t)
dt

(t− a)2−(α+β)

]
.

Notice that as α,β→ 1, we have T1
aT

1
af(x) = T2

af(x). Now, let us introduce the general-
ized version of Theorem 2.2.1.

Theorem 2.2.3. Let f : [a,∞) → R be a function such that fn(x) is continuous. Then, for
x > a,α ∈ (n,n+ 1],n ∈ Z+,β = α−n,η ∈ R+. we have

Ga
αT

α
af(x) = f(x), (2.35)

Tα
aGa

αf(x) = f(x) −

n∑
k=0

fk(a)(x− a)k

k!
, (2.36)

and for the function f : [−∞,b) → R whose nth derivative is continuous, we have

bGα bT
αf(x) = f(x), (2.37)

bT
α bGαf(x) = f(x) −

n∑
k=0

(−1)k
fk(b)(b− x)k

k!
. (2.38)
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Proof. By means of (2.9) and (2.27), we get

Ga
αT

α
af(x) = G

a
β

(
dn

dxn
Tα

af(x)

)
=
Γ(η−β+ 1)
Γ(η)Γ(n+ 1)

Ga
β

(
dn

dxn

{∫x
a

(x− t)nf(t)
dt

(t− a)1−β

})
= Ga

β

(
Γ(η−β+ 1)

Γ(η)

∫x
a

f(t)
dt

(t− a)1−β

)
= Ga

βT
β
af(x) = f(x).

Tα
aGa

αf(x) =
Γ(η−β+ 1)

Γ(η)
In+1
a

(
(x− a)β−1Ga

αf(x)
)

=
Γ(η−β+ 1)
Γ(η)Γ(n+ 1)

∫x
a

(x− t)nGa
αf(t)

dt

(t− a)1−β

=
Γ(η−β+ 1)
Γ(η)Γ(n+ 1)

∫x
a

(x− t)nGa
βf

(n)(t)
dt

(t− a)1−β

=
Γ(η−β+ 1)
Γ(η)Γ(n+ 1)

∫x
a

(x− t)n(t− a)1−β Γ(η)

Γ(η−β+ 1)
f(n+1)(t)

dt

(t− a)1−β

= In+1
a f(n+1)(x) = f(x) −

n∑
k=0

fk(a)(x− a)k

k!
,

where we used the integration by parts. A similar argument can be followed to prove the
relations for the right fractional derivatives and integrals.

Note that if n = 0, then Tα
aGa

αf(x) = f(x) − f(a) and bT
αbGαf(x) = f(x) − f(b).

3. Gohar fractional power series expansions

Certain functions that lack infinite differentiability at some points do not possess a
Taylor power series expansion at those points. In this section, we proceed to develop the
Gohar fractional power series expansions to ensure the existence of fractional power series
expansions for these functions at such points.

Theorem 3.0.1. Let f(x) be an infinitely Gx0
α -differentiable function on the neighborhood of

a point x0. Then, for 0 < α ⩽ 1, the Gohar fractional power series expansion of f is defined
by

f(x) =

∞∑
k=0

[
Γ(η−α+ 1)
αΓ(η)

]k
G

x0(k)
α f(x0)(x− x0)

αk

k!
, (3.1)

where x0 < x < x0 + R1/α, R > 0,η ∈ R+.

Proof. Let us expand f as an infinite power series of the form

f(x) =

∞∑
i=0

ci(x− x0)
iα, x0 < x < x0 + R1/α, R > 0.

Consequently,
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f(x0) = c0

Gx0
α f(x0) =

αΓ(η)

Γ(η−α+ 1)
c1 → c1 =

Γ(η−α+ 1)
αΓ(η)

Gx0
α f(x0)

G
x0(2)
α f(x0) =

[
αΓ(η)

Γ(η−α+ 1)

]2

· 2c2 → c2 =

[
Γ(η−α+ 1)
αΓ(η)

]2
G

x0(2)
α f(x0)

2
.
.
.

G
x0(n)
α f(x0) =

[
αΓ(η)

Γ(η−α+ 1)

]n
· (n!)cn → cn =

[
Γ(η−α+ 1)
αΓ(η)

]n
G

x0(n)
α f(x0)

n!
.

Example 3.0.1. The Gohar fractional exponential function Ex0
α,η(λ, x) is not classically

differentiable at x = x0, and so it does not possess a Taylor power series expansion on the
neighborhood of x0 for 0 < α ⩽ 1. However, Gx0(k)

α f(x0) = λ
k for all k, which means that

f can be expanded in the Gohar fractional sense as

Ex0
α,η(λ, x) =

∞∑
k=0

[
λ · Γ(η−α+ 1)

αΓ(η)

]k (x− x0)
αk

k!
. (3.2)

The ratio test confirms the convergence of the series above to f over x ∈ [x0,∞).

Example 3.0.2. The fractional trigonometric functions f(x) = sin(x− x0)
α and g(x) =

cos(x − x0)
α are not classically differentiable at x = x0, and so they do not possess a

Taylor power series expansion over the neighborhood of x0 for 0 < α ⩽ 1. However

Gx0
α f(x) =

αΓ(η)

Γ(η−α+ 1)
g(x) and Gx0

α g(x) = −
αΓ(η)

Γ(η−α+ 1)
f(x),

and hence

sin(x− x0)
α =

∞∑
k=0

(−1)k
(x− x0)

(2k+1)α

(2k+ 1)!
, x ∈ [x0,∞), (3.3)

cos(x− x0)
α =

∞∑
k=0

(−1)k
(x− x0)

(2k)α

(2k)!
, x ∈ [x0,∞). (3.4)
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Example 3.0.3. Consider the initial value problem

Ga
αf(x) = λf(x), f(x0) = f0 (3.5)

whose solution is differentiable over (x0,∞).

Applying the left Gohar fractional integral to both sides of (3.5), we get

f(x) = f0 + λT
α
af(x),

And hence

fn+1(x) = f0 + λT
α
afn(x),n = 0, 1, 2, . . .

For n=0, we have

f1(x) = f0 + λf0
Γ(η−α+ 1)
αΓ(η)

(x− x0)
α = f0

[
1 + λ

Γ(η−α+ 1)
αΓ(η)

(x− x0)
α

]
,

for n = 1, we have

f2(x) = f0

[
1 + λ

Γ(η−α+ 1)
αΓ(η)

(x− x0)
α + λ2

(
Γ(η−α+ 1)
αΓ(η)

)2

· (x− x0)
2α

2

]
.

By means of Mathematical induction, the solution to 3.5 is given by

fn(x) = f0

n∑
k=0

(
λ
Γ(η−α+ 1)
αΓ(η)

)k

· (x− x0)
kα

k!
. (3.6)

As n→ ∞, the obtained solution is expressed in terms of the Gohar fractional exponential
function (2.23) as follows

fn(x) = f0

∞∑
k=0

(
λ
Γ(η−α+ 1)
αΓ(η)

)k

· (x− x0)
kα

k!
= f0E

x0
α,η(λ, x). (3.7)

For α = 1 the solution (3.7) reduces to f(x) = f0E
x0
1,η(λ, x) = f0e

λ(x−x0), which is
compatible with the exact solution of (3.5) at α = 1.

4. Gohar fractional Laplace transform

4.1. Basic definitions and results
Definition 4.1.1. Let f : [t0,∞) → R be a real-valued function. Then the Gohar fractional
Laplace transform of f of order 0 < α ⩽ 1, denoted by L t0

α f(t), is defined by

L t0
α {f(t)} = F t0

α (S) =
Γ(η−α+ 1)

Γ(η)

∫∞
t0

Eα,η(−S, t)f(t)
dt

(t− t0)1−α
, (4.1)

provided the integral exists, where t0 ∈ R,η ∈ R+.



A. A. Gohar et al. | On Gohar Fractional Calculus 45

Lemma 4.1.1. Let f : [t0,∞) → R be twice differentiable real-valued function. Then its
Gohar fractional Laplace transform satisfies the following relations:

L t0
α {Gt0

α f(t)} = SL t0
α {f(t)}− f(t0), (4.2)

L t0
α {G

t0(2)
α f(t)} = S2L t0

α {f(t)}− Sf(t0) −G
t0
α f(t0). (4.3)

Proof. The result (4.2) can be obtained by applying (4.1) and (2.3) and using the
integration by parts, while (4.3) is a direct consequence of (4.2).

The following Lemma highlights one of the most interesting results: the relation between
the classical and the Gohar fractional Laplace transforms.

Lemma 4.1.2. Let f : [t0,∞) → R be a real-valued function such that L t0
α {f(t)} = F t0

α (S)
exists. Then

L t0
α {f(t)} = F t0

α (S) = L

{
f

(
(

αΓ(η)

Γ(η−α+ 1)
t)

1
α + t0

)}
, 0 < α ⩽ 1, (4.4)

where
L {f(t)} =

∫∞
0
e−Stf(t)dt. (4.5)

Proof. The result follows directly by taking the substitution x =
Γ(η−α+1)

Γ(η) · (t−t0)
α

α in
(4.1).

Theorem 4.1.1. Let f,g : [t0,∞) → R be real-valued functions and λ,µ, c ∈ R. Then, if
F t0

α (S) = L t0
α {f(t)} and H

t0
α (S) = L t0

α {h(t)} exist for S ⩾ 0, 0 < α ⩽ 1, then

L t0
α {λf(t) + µh(t)} = λF t0

α (S) + µHt0
α (S), S > 0, (4.6)

L t0
α {Et0

α,η(λ, t)f(t)} = F t0
α (S− λ), (4.7)

L t0
α

{[
Γ(η−α+ 1)
αΓ(η)

]n
(t− t0)

nαf(t)

}
= (−1)n

dn

dSn
F t0

α (S), (4.8)

L t0
α {(f ∗ h)(t)} = F t0

α (S) ·Ht0
α (S), S > 0, (4.9)

L t0
α {Tα

t0
f(t)} =

F t0
α (S)

S
, S > 0. (4.10)

Proof. The relations (4.6), (4.7), (4.8), and (4.9) are direct consequences of (4.4)
and the properties of the classical Laplace transform, and for (4.10) we have

L t0
α {Gt0

αTα
t0
f(t)} = F t0

α (S) = SL t0
α {Tα

t0
f(t)}−Tα

t0
f(t0) = SL t0

α {Tα
t0
f(t)},

which implies that

L t0
α {Tα

af(t)} =
F t0

α (S)

S
, S > 0,
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where Gt0
αTα

t0
f(t) = f(t) by (2.19) and L t0

α {Gt0
αTα

t0
f(t)} = SL t0

α {Tα
t0
f(t)}− Tα

t0
f(t0) by

(4.2) and Tα
t0
f(t0) = 0 by (2.17).

Example 4.1.1. In this example we obtain the Gohar fractional Laplace transform for
some functions.

L t0
α {c} =

c

S
, c ∈ R, S > 0

L t0
α {Et0

α,η(λ, t)} =
1

S− λ
, S > λ

L 0
α{t

n} =

[
αΓ(η)

Γ(η−α+ 1)

]n
α Γ(nα + 1)

S
n
α+1 ,n ∈ Z+, S > 0

L 0
α{t

nE0
α,η(λ, t)} =

[
αΓ(η)

Γ(η−α+ 1)

]n
α Γ(nα + 1)
(S− λ)

n
α+1 ,n ∈ Z+, S > λ

L t0
α

{
Et0
α,η(λ, t) sin

(
k
Γ(η−α+ 1)

Γ(η)
.
(t− t0)

α

α

)}
=

k

(S− λ)2 + k2 ,k ∈ R, S > λ.

Example 4.1.2 (The logistic model). Consider the nonlinear Gohar fractional logistic-type
differential equation

Gαf(t) = [1 − E0
α,η(−1, t)f(t)]f(t), 0 < α ⩽ 1, (4.11)

Subject to the initial condition f(0) = f0 = 1
2 .

With the transformation φ(t) = [f(t)]−1, we can linearize (4.11) as follows

Gαφ(t) = E
0
α,η(−1, t) −φ(t).

Applying the Gohar fractional Laplace transform to both sides we get

L 0
α{Gαφ(t)} = L 0

α{E
0
α,η(−1, t) −φ(t)},

SΦ0
α(S) − 2 =

1
(S+ 1)

−Φ0
α(S),

Φ0
α(S) =

1
(S+ 1)2 +

2
(S+ 1)

.

Applying the inverse Gohar fractional Laplace transform to both sides, the solution to
(4.11) is given by

f(t) =

[
Γ(η−α+ 1)
αΓ(η)

tα + 2
]−1

· E0
α,η(−1, t). (4.12)
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Example 4.1.3 (The Bertalanffy model). The nonlinear Gohar fractional Bertalanffy dif-
ferential equation is defined as

Gαf(t) = f(t)
2
3 − f(t), 0 < α ⩽ 1, (4.13)

under the initial condition f(0) = f0.
With the transformation φ(t) = f(t)

1
3 , we can linearize (4.13) as follows:

Gαφ(t) =
1
3
(1 −φ(t)),φ0 = f

1
3
0 .

Applying the Gohar fractional Laplace transform to both sides we get

Φ0
α(S) =

1
S
+ (φ0 − 1)

(
S+

1
3

)−1

.

Applying the inverse Gohar fractional Laplace transform to both sides, we get

f(t) =

[
1 +

(
f

1
3
0 − 1

)
· E0

α,η

(
−

1
3

, t
)]3

. (4.14)

4.2. Validity of the Gohar fractional Laplace transform for solving linear fractional differen-
tial equations

Now we shall investigate the validity of the Gohar fractional Laplace transform for
solving linear fractional differential equations of the form

Gt0
α f(t) +Pf(t) = ψ(t),∀t ∈ [t0,∞); f(a) = f0, (4.15)

where f : [t0,∞) → R,P ∈ R, and ψ : [t0,∞) → R is a continuous function.

Theorem 4.2.1. Let f : [t0,∞) → R be a piecewise continuous Gohar exponentially bounded
function. If F t0

α (S) = L t0
α {f(t)}, then F t0

α (S) → 0 as S → ∞.

Proof. The Gohar exponential boundedness of f implies the existence of λ, Λ1 ∈ R+ and
τ ∈ [t0,∞) such that |f(t)| ⩽ Λ1 ·Et0

α,η(λ, t), ∀ t ⩾ τ. Furthermore, the piecewise continuity
of f on [t0, τ] implies its boundedness there; that is, ∃ Λ2 > 0 such that |f(t)| ⩽ Λ2,∀ t0 ⩽
t ⩽ τ.
This means that |f(t)| ⩽ Λ · Et0

α,η(λ, t),∀ t ∈ [t0,∞), where Λ = max{Λ1,Λ2}. Therefore,∣∣∣∣∣Γ(η−α+ 1)
Γ(η)

∫T
t0

Et0
α,η(−S, t)f(t)

dt

(t− t0)1−α

∣∣∣∣∣ ⩽ Γ(η−α+ 1)
Γ(η)

∫T
t0

|Et0
α,η(−S, t)f(t)|

dt

(t− t0)1−α

⩽ Λ
Γ(η−α+ 1)

Γ(η)

∫T
t0

Et0
α,η(−S+ λ, t)

dt

(t− t0)1−α

=
Λ

S− λ
−

Λ

S− λ
Et0
α,η(−S+ λ, T).

As T → ∞, we have
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|F t0
α (s)| ⩽

Λ

s− λ
, s > λ.

According to Theorem 4.2.1, the functions U(s) = cos(s),V(s) = s2,and W(s) = es

s are
not Gohar fractional Laplace transforms of any function f.

Theorem 4.2.2. Let f : [t0,∞) → R be a unique continuous solution to the linear fractional
differential equation (4.1); if the forcing function ψ : [t0,∞) → R is continuous and Gohar
exponentially bounded over its domain, then the solution f(t) and its Gohar fractional deriva-
tive Gt0

α f(t) are Gohar exponentially bounded and their Gohar fractional Laplace transform
exist.

Proof. Since ψ(t) is Gohar exponential bounded over [t0,∞), then there exist ν,Ω ∈
R+and sufficiently large τ ∈ [t0,∞), such that |ψ(t)| ⩽ ΩEt0

α,η(−ν, t), ∀ t ⩾ τ. Further-
more, f(t) is a solution to the Volterra integral equation

f(t) = f0 +
Γ(η−α+ 1)

Γ(η)

∫t
t0

(ψ(s) −Pf(s))
ds

(s− t0)1−α
.

For t ⩾ τ, we can write it as

f(t) = f0 +
Γ(η−α+ 1)

Γ(η)

{∫τ
t0

(ψ(s) −Pf(s))
ds

(s− t0)1−α
+

∫t
τ

(ψ(s) −Pf(s))
ds

(s− t0)1−α

}
.

The continuity of f(t) leads to the boundedness of ψ(t)−Pf(t) over [t0, τ]; that is, ∃ Λ > 0
such that ||ψ(t) −Pf(t)|| ⩽ Λ,∀ t0 ⩽ t ⩽ τ. Consequently we have

||f(t)|| ⩽ ||f0||+
Γ(η−α+ 1)

Γ(η)

·
{
Λ

∫τ
t0

ds

(s− t0)1−α
+

∫t
τ

||ψ(s)||
ds

(s− t0)1−α
+ |P|

∫t
τ

||f(s)||
ds

(s− t0)1−α

}
.

Multiplying both sides by the Gohar fractional exponential function Et0
α,η(−ν, t) and noting
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that Et0
α,η(−ν, t) ⩽ Et0

α,η(−ν, τ) and |ψ(t)| ⩽ Ω · Et0
α,η(ν, t), ∀ t ⩾ τ, we get

||f(t)||·Et0
α,η(−ν, t) ⩽ ||f0|| · Et0

α,η(−ν, t) +
Γ(η−α+ 1)

Γ(η)

{
ΛEt0

α,η(−ν, t)
∫τ
t0

ds

(s− t0)1−α

+ Et0
α,η(−ν, t)

∫t
τ

||ψ(s)||
ds

(s− t0)1−α
+ |P| · Et0

α,η(−ν, t)
∫t
τ

||f(s)||
ds

(s− t0)1−α

}

⩽ ||f0|| · Et0
α,η(−ν, τ) +

Γ(η−α+ 1)
Γ(η)

{
Λ.

(τ− t0)
α

α
Et0
α,η(−ν, τ)

+ Et0
α,η(−ν, τ)

∫t
τ

||ψ(s)||
ds

(s− t0)1−α
+ |P|

∫t
τ

||f(s)|| · Et0
α,η(−ν, τ)

ds

(s− t0)1−α

}

⩽ ||f0|| · Et0
α,η(−ν, τ) +

Γ(η−α+ 1)
Γ(η)

{
Λ · (τ− t0)

α

α
Et0
α,η(−ν, τ)

+Ω

∫t
t0

Et0
α,η(−ν, τ) · Et0

α,η(ν, s)
ds

(s− t0)1−α
+ |P|

∫t
t0

||f(s)|| · Et0
α,η(−ν, s)

ds

(s− t0)1−α

}

⩽ ||f0|| · Et0
α,η(−ν, τ) +

Γ(η−α+ 1)
Γ(η)

{
Λ · (τ− t0)

α

α
Et0
α,η(−ν, τ)

+Ω

∫t
t0

e−νξdξ+ |P|

∫t
t0

||f(s)|| · Et0
α,η(−ν, s)

ds

(s− t0)1−α

}

⩽ ||f0|| · Et0
α,η(−ν, τ) +

Γ(η−α+ 1)
Γ(η)

{
Λ · (τ− t0)

α

α
Et0
α,η(−ν, τ)

+Ω

∫∞
t0

e−νξdξ+ |P|

∫t
t0

||f(s)|| · Et0
α,η(−ν, s)

ds

(s− t0)1−α

}

⩽ ||f0|| · Et0
α,η(−ν, τ)

Γ(η−α+ 1)
Γ(η)

{
Λ · (τ− t0)

α

α
Et0
α,η(−ν, τ)

+
Ω

ν
e−νt0 + |P|

∫t
t0

||f(s)|| · Et0
α,η(−ν, s)

ds

(s− t0)1−α

}
, t ⩾ τ.

By taking

λ = ||f0|| · Et0
α,η(−ν, τ) +

Γ(η−α+ 1)
Γ(η)

{
Λ · (τ− t0)

α

α
Et0
α,η(−ν, τ) +

Ω

ν
e−νt0

}
,

and

φ(t) = ||f(t)|| · Et0
α,η(−ν, t), µ = |P|,

we get the Gronwall integral inequality (2.25)
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φ(t) = λ+ µ · Γ(η−α+ 1)
Γ(η)

∫t
t0

φ(s)
ds

(s− t0)1−α
, t ⩾ τ.

In view of Lemma (2.2.1), we have

φ(t) ⩽ λEt0
α,η(µ, t),

which implies that

||f(t)|| ⩽ λEt0
α,η(µ+ ν, t), t ⩾ τ.

From (4.15), we get

||Gt0
α f(t)|| ⩽ |P|||f(t)||+ ||ψ(t)|| ⩽ λ|P|Et0

α,η(µ+ ν, t) +ΩEt0
α,η(ν, t), t ⩾ τ.

This completes the proof.

5. Conclusions

In this work, we developed new definitions, fundamental theorems, and classical prop-
erties of Gohar fractional calculus. The left and right Gohar fractional derivatives and
integrals are defined and extended to higher fractional orders. The fractional Gronwall’s
inequality, power series expansion, and Laplace transform are defined and applied to over-
come some of the limitations in the classical integer-order calculus. The fractional Laplace
transform is applied to solve the logistic and Bertalanffy nonlinear fractional differen-
tial equations. The fractional Gronwall inequality is used to demonstrate the exponential
boundedness of the solutions to linear fractional differential equations, which validates
the Gohar fractional Laplace transform for solving such equations. However, it is essential
for the forcing function to be continuous and Gohar exponentially bounded.
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