A Deep Learning Approach-FDNN: Forest Deep Neural Network to Predict Cow’s Parturition Date



  • Md Motiur Rahman Chattogram Veterinary and Animal Sciences University
  • Eaftekhar Ahmed Rana
  • Nafisa Nawar Tamzi
  • Indrajit Saha
  • Fazlul Hasan Siddiqui


calving time, random forest, deep neural network, forest deep neural network, model optimization


In this prospective study, we integrate neural network architecture with a supervised random forest feature detector to develop a new model named Forest Deep Neural Network (FDNN) to predict daily and hourly calving time of cattle. To overcome challenges of prediction problems like data sparsity along with unknown correlation structures, we incorporate the benefits of random forest (RF) with a deep neural network (DNN) to predict the daily and hourly calving time of cattle, which is nobody done yet. For this study, we take a total of 45 Holstein-Friesian cows (27 primiparous and 18 multiparous) for collecting physical activities. Using IceQube and HR Tag technologies, we record daily and hourly lying time, the number of stand-ups, ruminating time, the number of steps, and the number of head moves of cattle from 15 days before the actual calving time. Different statistical analysis has been carried out over the daily and hourly-captured data, and we have found that these monitored physical activities change very significantly over time. We have applied five classifiers such as FDNN, DNN, RF, decision tree (DT), and support vector machine (SVM) over the daily and hourly datasets. Hyperparameter optimization has been conducted over the classifiers using Grid Search approach to filter out the optimal parameter configurations. With optimal parameters, our developed model overpowered the other four classifiers in terms of accuracy, sensitivity, specificity, and ROC score (ACC= 98.38, SN=88.19, SP=98.41, and ROC=99 of predicting daily calving time; ACC=97.93, SN=97.40, SP=89.42, and ROC=98 of predicting hourly calving time).


Download data is not yet available.


J. F. Ettema and J. E. P. Santos, “Impact of age at calving on lactation, reproduction, health, and income in first-parity Holsteins on commercial farms,” J. Dairy Sci., vol. 87, no. 8, pp. 2730–2742, 2004, doi: 10.3168/jds.S0022-0302(04)73400-1.

M. M. I. Hasan, M. M. Hassan, R. C. Mohanta, M. A. H. Miah, M. Harun-Or-Rashid, and N. S. Juyena, “A comparative study on productive, reproductive and ovarian features of repeat breeder and normal cyclic cows in the selected areas of Bangladesh,” J. Adv. Vet. Anim. Res., vol. 5, no. 3, pp. 324–331, 2018, doi: 10.5455/javar.2018.e283.

M. M. Kamal, “Review on cattle reproduction in Bangladesh,” Int. J. Dairy Sci., vol. 5, no. 4, pp. 245–252, 2010, doi: 10.3923/ijds.2010.245.252.

K. Schirmann, N. Chapinal, D. M. Weary, L. Vickers, and M. A. G. Von Keyserlingk, “Short communication: Rumination and feeding behavior before and after calving in dairy cows,” J. Dairy Sci., vol. 96, no. 11, pp. 7088–7092, Nov. 2013, doi: 10.3168/jds.2013-7023.

G. Mattachini, E. Riva, C. Bisaglia, J. C. A. M. Pompe, and G. Provolo, “Methodology for quantifying the behavioral activity of dairy cows in freestall barns,” J. Anim. Sci., vol. 91, no. 10, pp. 4899–4907, 2013, doi: 10.2527/jas.2012-5554.

R. A. Bellows, R. E. Short, R. B. Staigmiller, and W. L. Milmine, “Effects of induced parturition and early obstetrical assistance in beef cattle.,” J. Anim. Sci., vol. 66, no. 5, pp. 1073–1080, 1988, doi: 10.2527/jas1988.6651073x.

D. N. Ledgerwood, C. Winckler, and C. B. Tucker, “Evaluation of data loggers, sampling intervals, and editing techniques for measuring the lying behavior of dairy cattle,” J. Dairy Sci., vol. 93, no. 11, pp. 5129–5139, Nov. 2010, doi: 10.3168/jds.2009-2945.

M. R. Borchers and J. M. Bewley, “An assessment of producer precision dairy farming technology use, prepurchase considerations, and usefulness,” J. Dairy Sci., vol. 98, no. 6, pp. 4198–4205, Jun. 2015, doi: 10.3168/jds.2014-8963.

M. R. Borchers, Y. M. Chang, I. C. Tsai, B. A. Wadsworth, and J. M. Bewley, “A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors,” J. Dairy Sci., vol. 99, no. 9, pp. 7458–7466, Sep. 2016, doi: 10.3168/jds.2015-10843.

S. A. E. Eaglen, M. P. Coffey, J. A. Woolliams, and E. Wall, “Evaluating alternate models to estimate genetic parameters of calving traits in United Kingdom Holstein-Friesian dairy cattle,” Genet. Sel. Evol., vol. 44, no. 1, pp. 1–13, Jul. 2012, doi: 10.1186/1297-9686-44-23.

H. M. Miedema, M. S. Cockram, C. M. Dwyer, and A. I. Macrae, “Changes in the behaviour of dairy cows during the 24h before normal calving compared with behaviour during late pregnancy,” Appl. Anim. Behav. Sci., vol. 131, no. 1–2, pp. 8–14, Apr. 2011, doi: 10.1016/j.applanim.2011.01.012.

G. A. Miller et al., “Using animal-mounted sensor technology and machine learning to predict time-to-calving in beef and dairy cows,” Animal, vol. 14, no. 6, pp. 1304–1312, Jun. 2020, doi: 10.1017/S1751731119003380.

O. Burfeind, V. S. Suthar, R. Voigtsberger, S. Bonk, and W. Heuwieser, “Validity of prepartum changes in vaginal and rectal temperature to predict calving in dairy cows,” J. Dairy Sci., vol. 94, no. 10, pp. 5053–5061, Oct. 2011, doi: 10.3168/jds.2011-4484.

B. Robert, B. J. White, D. G. Renter, and R. L. Larson, “Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle,” Comput. Electron. Agric., vol. 67, no. 1–2, pp. 80–84, Jun. 2009, doi: 10.1016/j.compag.2009.03.002.

G. Mattachini, A. Antler, E. Riva, A. Arbel, and G. Provolo, “Automated measurement of lying behavior for monitoring the comfort and welfare of lactating dairy cows,” Livest. Sci., vol. 158, no. 1–3, pp. 145–150, Dec. 2013, doi: 10.1016/j.livsci.2013.10.014.

J. P. Bikker et al., “Technical note: Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity,” J. Dairy Sci., vol. 97, no. 5, pp. 2974–2979, 2014, doi: 10.3168/jds.2013-7560.

C. Fenlon, L. O’Grady, J. F. Mee, S. T. Butler, M. L. Doherty, and J. Dunnion, “A comparison of 4 predictive models of calving assistance and difficulty in dairy heifers and cows,” J. Dairy Sci., vol. 100, no. 12, pp. 9746–9758, Dec. 2017, doi: 10.3168/jds.2017-12931.

J. L. L. Guerra, D. E. Franke, and D. C. Blouin, “Genetic parameters for calving rate and calf survival from linear, threshold, and logistic models in a multibreed beef cattle population1,” J. Anim. Sci., vol. 84, no. 12, pp. 3197–3203, Dec. 2006, doi: 10.2527/jas.2006-007.

A. S. Keceli, C. Catal, A. Kaya, and B. Tekinerdogan, “Development of a recurrent neural networks-based calving prediction model using activity and behavioral data,” Comput. Electron. Agric., vol. 170, p. 105285, Mar. 2020, doi: 10.1016/j.compag.2020.105285.

D. Zaborski, W. S. Proskura, and W. Grzesiak, “CLASSIFICATION OF CALVING DIFFICULTY SCORES USING DIFFERENT TYPES OF DECISION TREES,” Acta Sci. Pol. Zootech., vol. 15, no. 4, pp. 55–70, Jan. 2017, doi: 10.21005/asp.2016.15.4.05.

S. Shahinfar, D. Page, J. Guenther, V. Cabrera, P. Fricke, and K. Weigel, “Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms,” J. Dairy Sci., vol. 97, no. 2, pp. 731–742, Feb. 2014, doi: 10.3168/jds.2013-6693.

V. Ouellet, E. Vasseur, W. Heuwieser, O. Burfeind, X. Maldague, and Charbonneau, “Evaluation of calving indicators measured by automated monitoring devices to predict the onset of calving in Holstein dairy cows,” J. Dairy Sci., vol. 99, no. 2, pp. 1539–1548, Feb. 2016, doi: 10.3168/jds.2015-10057.

M. R. Borchers, Y. M. Chang, K. L. Proudfoot, B. A. Wadsworth, A. E. Stone, and J. M. Bewley, “Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle,” J. Dairy Sci., vol. 100, no. 7, pp. 5664–5674, Jul. 2017, doi: 10.3168/jds.2016-11526.

K. Stapor, “Evaluating and comparing classifiers: Review, some recommendations and limitations,” in Advances in Intelligent Systems and Computing, 2018, vol. 578, pp. 12–21. doi: 10.1007/978-3-319-59162-9_2.

Y. Kirsal Ever, K. Dimililer, and B. Sekeroglu, “Comparison of Machine Learning Techniques for Prediction Problems,” in Advances in Intelligent Systems and Computing, Mar. 2019, vol. 927, pp. 713–723. doi: 10.1007/978-3-030-15035-8_69.

M. W. Ahmad, M. Mourshed, and Y. Rezgui, “Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption,” Energy Build., vol. 147, pp. 77–89, Jul. 2017, doi: 10.1016/j.enbuild.2017.04.038.

H. Peng and Y. Lu, “Model selection in linear mixed effect models,” J. Multivar. Anal., vol. 109, pp. 109–129, Aug. 2012, doi: 10.1016/j.jmva.2012.02.005.

D. A. Magezi, “Linear mixed-effects models for within-participant psychology experiments: an introductory tutorial and free, graphical user interface (LMMgui),” Front. Psychol., vol. 6, no. JAN, p. 2, Jan. 2015, doi: 10.3389/fpsyg.2015.00002.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2013, vol. Part F128815, pp. 847–855. doi: 10.1145/2487575.2487629.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-Parameter Optimization,” 2011, pp. 2546–2554.

C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental comparison of performance measures for classification,” Pattern Recognit. Lett., vol. 30, no. 1, pp. 27–38, Jan. 2009, doi: 10.1016/j.patrec.2008.08.010.

N. Japkowicz and M. Shah, Evaluating learning algorithms: A classification perspective, vol. 9780521196000. Cambridge University Press, 2011. doi: 10.1017/CBO9780511921803.

Q. Zou, K. Qu, Y. Luo, D. Yin, Y. Ju, and H. Tang, “Predicting Diabetes Mellitus With Machine Learning Techniques,” Front. Genet., vol. 9, Nov. 2018, doi: 10.3389/fgene.2018.00515.

A. Wehrend, E. Hofmann, K. Failing, and H. Bostedt, “Behaviour during the first stage of labour in cattle: Influence of parity and dystocia,” Appl. Anim. Behav. Sci., vol. 100, no. 3–4, pp. 164–170, Nov. 2006, doi: 10.1016/j.applanim.2005.11.008.

J. M. Huzzey, M. A. G. Von Keyserlingk, and D. M. Weary, “Changes in feeding, drinking, and standing behavior of dairy cows during the transition period,” J. Dairy Sci., vol. 88, no. 7, pp. 2454–2461, 2005, doi: 10.3168/jds.S0022-0302(05)72923-4.

L. Calamari, N. Soriani, G. Panella, F. Petrera, A. Minuti, and E. Trevisi, “Rumination time around calving: An early signal to detect cows at greater risk of disease,” J. Dairy Sci., vol. 97, no. 6, pp. 3635–3647, 2014, doi: 10.3168/jds.2013-7709.J. U. Duncombe, “Infrared navigation—Part I: An assessment of feasibility (Periodical style),” IEEE Trans. Electron Devices, vol. ED-11, pp. 34–39, Jan. 1959.



How to Cite

Rahman, M. M., Rana, E. A., Tamzi, N. N., Saha, I., & Siddiqui, F. H. . (2022). A Deep Learning Approach-FDNN: Forest Deep Neural Network to Predict Cow’s Parturition Date. Journal of Applied Artificial Intelligence, 3(1), 61–74. https://doi.org/10.48185/jaai.v3i1.522