Acceptance of artificial intelligence: key factors, challenges, and implementation strategies
Keywords:
Artificial intelligence, causability, explainability, explainable AI,histopathology, medicineAbstract
This research paper investigates the key factors influencing AI acceptance, focusing on elements such as technological readiness, perceived usefulness, and ease of use, along with the organizational and societal impacts. It identifies the significant obstacles to AI adoption, including ethical concerns, data privacy issues, and the potential for job displacement. The study also explores the importance of trust and transparency in promoting AI acceptance, highlighting the necessity for explainable AI (XAI) to build user confidence. Strategies for enhancing AI acceptance are examined, emphasizing the need for robust regulatory frameworks, ongoing education, and skill development to mitigate resistance and boost user engagement. The research stresses the importance of a user-centric approach in AI system design and implementation, taking into account end-user needs and concerns. Additionally, it underscores the value of collaboration between industry, academia, and policymakers in fostering an environment conducive to AI innovation and acceptance. By offering a thorough analysis of the factors affecting AI acceptance and the associated challenges, this paper provides valuable insights and actionable strategies for stakeholders aiming to navigate the complex landscape of AI integration effectively.
Downloads
Published
How to Cite
Issue
Section
Copyright (c) 2024 Journal of Applied Artificial Intelligence
This work is licensed under a Creative Commons Attribution 4.0 International License.