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Abstract: Memory-type control charts, renowned for their effectiveness in identifying small
deviations in the process variance, are commonly used to monitor the process variability. In this
article, we introduce a new tool, the Quadruple Exponentially Weighted Moving Average
(QEWMA) chart, which is designed for the specific purpose of monitoring changes in the process
variability. We refer to this chart as the S?>-QEWMA chart. The performance of the S2-QEWMA
chart is assessed through an extensive series of Monte-Carlo simulations, carefully considering the
run-length distribution. Comparing it with other well-known memory-type charts, it becomes evident
that the S2-QEWMA chart excels in its ability to effectively detect small shifts in the process
dispersion. To illustrate the practical application of this chart, we provide an example.

Keywords: average run-length, exponentially weighted moving average, dispersion control chart,
Monte-Carlo simulations, standard deviation of run-length.

1. Introduction

In Statistical Process Control (SPC), two types of variations exist within a production process:
common causes and assignable causes. A production process is considered to be in statistical control
(1C) when it is influenced solely by common causes of variation. Conversely, when assignable causes
of variation stem from external sources, they result in a process going out of statistical control
(OOC). Control charts play a pivotal role in SPC by detecting assignable causes of variation that can
impact process parameters, specifically the mean or variance of the process. These charts can be
categorized into two types: location charts, which are effective at identifying deviations in the
process mean, and dispersion charts, which are well-suited for detecting variations in process
dispersion.

Shewhart-type control charts primarily rely on the most recent observations, making them
effective at detecting large shifts in process parameters. Conversely, memory-type control charts,
such as the cumulative sum (CUSUM) chart [1, 2] and the exponentially weighted moving average
(EWMA) chart [3], take into account both current and past data, rendering them more sensitive in
identifying small to moderate shifts. Additionally, innovations have been introduced in this field.
Shamma and Shamma [4] and Zhang and Chen [5] developed the Double EWMA (DEWMA) chart,
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while Sheu and Lin [6] extended the EWMA chart to create the generally weighted moving average
(GWMA) chart. Haq [7, 8] proposed the Hybrid EWMA (HEWMA) chart, and Alevizakos,
Chatterjee, and Koukouvinos [9, 10] introduced the Triple EWMA (TEWMA) and Quadruple EWMA
(QEWMA) charts for monitoring the process mean.

In many industrial applications, it is crucial to monitor the existence of shifts in the process
dispersion rather than the process mean. Therefore, numerous memory-type dispersion control charts
have been introduced by prominent scholars. Take for example, Castagliola [11] and Castagliola,
Celano and Fichera [12], utilized a three-parameter logarithmic transformation to sample variance
(S?) for the purpose of constructing the EWMA and CUSUM charts, namely the S2-EWMA and S2-
CUSUM charts. Several authors have also utilized this logarithmic transformation to propose control
charts for monitoring the process variability as well. Abbas, Riaz and Does [13] recommended the
CS-EWMA chart, Tariq et al. [14] presented the S2-HEWMA chart, Chatterjee, Koukouvinos and
Lappa [15] introduced the S2-TEWMA chart, while Alevizakos et al. [16, 17] developed the S?-
GWMA and S2?-Double GWMA (S2-DGWMA) charts for monitoring the process variability.
Additionally, a multitude of dispersion control charts have been introduced in the literature. These
include the works of Reynolds and Stoumbos [18], Castagliola et al. [19], Castagliola, Celano and
Fichera [20], Shu and Jiang [21], Abbasi et al. [22], Zaman et al. [23], Zhou, Zhou and Geng [24],
Sanusi et al. [25], Ali and Haq [26, 27], Haq [28, 29], Abbas et al. [30], Huang, Lu and Chen [31],
Riaz et al. [32], Mahadik, Godase and Teoh [33], Arshad, Noor-ul-Amin and Hanif [34], Haq and
Razzaq [35], Godase et al. [36], Ajibade et al. [37], Yang, Chen and Lin [38] and Jafari, Maleki and
Salmasnia [39].

In this current article, inspired by the research of Castagliola [11] and Alevizakos, Chatterjee, and
Koukouvinos [10], we introduce a novel control chart for monitoring process dispersion. This chart
is based on a 3-parameter logarithmic transformation to S? and is referred to as the S>-QEWMA
chart. To assess its effectiveness, we conduct a comparative study with other control charts, including
the S2-EWMA, S2-CUSUM, CS-EWMA, S2-HEWMA, S2-TEWMA, S?2-GWMA, and S2.-DGWMA
charts, using asymptotic control limits. To evaluate these control charts, we employ several Monte-
Carlo simulations and consider well-established performance measures such as the average run-
length (ARL) and the standard deviation of the run-length (SDRL). These comparisons reveal the
efficiency of the proposed memory-type chart in detecting minor shifts in process variability.

The remainder of this article is organized as follows: In Section 2, we will develop the S2-
QEWMA chart. In Section 3, we will examine the performance of this newly developed chart.
Following that, in Section 4, we will compare its performance with the previously mentioned
memory-type dispersion charts using measures like the ARL and the SDRL. Section 5 will provide
an illustrative example to explain how to implement the S2-QEWMA chart. Concluding remarks will
be summarized in Section 6, and additional technical details of the S2-QEWMA chart can be found
in the Appendix.

2. The proposed S2-QEWMA control chart

Consider a sample (or a subgroup) Xyq,...,Xkn, Of n(> 1) independent normal distributed
N(po, T0y) random variables, where p, and o, are assumed to be the IC process mean and standard
deviation, respectively. Here, k represents the sample number, with k taking on values of 1,2,.... If
T = 1, then the process is considered to be IC, whereas the process is declared as OOC when t # 1.
Our objective is to promptly detect a shift in the process dispersion, from the IC o3 value to the OOC
02 = (10,)?, where t # 1, while ensuring that the process mean remains at its I1C value (y,).
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The proposed S2-QEWMA chart considers a 3-parameter (a,b, ¢) logarithmic transformation
applied to S? [40, 41], thus

Tx=a+ bln(Slz( + c), for k=1,2,.. (D)
where a = A(n) — 2B(n)In(c,), b = B(n), c = C(n)o3, SZ = ﬁ}‘,j“:l(ij - Xk)z is the sample

variance and Xk:%Z}Llei is the sample mean. According to Castagliola [11], the proper

selection of the a, b, and c, implies that the statistic T, ~ N(ur(n),o%(n)). Table 1 provides
the values of A(n), B(n), C(n), pr(n) and op(n) for sample size n € {3,4,...,15}, that originally
presented in Table | of Castagliola [11].

Table 1. Values of A(n), B(n), C(n), pr(n),or(n) and Q, for sample size n € {3,4,..., 15}

n| Am BMm Cm pr(m) or(m) Qo
3 | -0.6627 1.8136 0.6777 0.02472 0.9165 0.276
4 | -0.7882 21089 0.6261 0.01266 0.9502 0.237
5 | -0.8969 23647 0.5979 0.00748 0.9670 0.211
6 |-0.9940 25941 0.5801 0.00485 0.9765 0.193
7 | -1.0827 2.8042 0.5678 0.00335 0.9825 0.178
8 | -1.1647 29992 0.5588 0.00243 0.9864 0.167
9 |-1.2413 3.1820 0.5519 0.00182 0.9892 0.157
10 | -1.3135 3.3548 0.5465 0.00141 0.9912 0.149
11 | -1.3820 3.5189 0.5421 0.00112 0.9927 0.142
12 | -1.4473 3.6757 0.5384 0.00090 0.9938 0.136
13 | -1.5097 3.8260 0.5354 0.00074 0.9947 0.131
14 | -1.5697 3.9705 0.5327 0.00062 0.9955 0.126
15 | -1.6275 4.1100 0.5305 0.00052 0.9960 0.122

The plotting statistic Q. of the S2-QEWMA control chart for monitoring the process variability is
given by

Zk = ATk + (1 - A)Zk—l
Yk = AZk + (1 - A)Yk—l
Wk = )\Yk + (1 - )\)Wk—l
Qr = AW + (1 — M)Qx—4

where A is the smoothing parameter with 0 < A < 1,and Qo = Wy =Y, = Zy = A(n) + B(n)In(1 +
C(n)) are the starting values. The Q, values are also provided in Table 1 for n € {3,4,...,15}.

fork=1,2,... 2

The mean of the statistic Qy is given by

E(Qx) = pr(n). 3
The variance of the statistic Qy is defined as
Var(Qy) = V(d,k)o%(n) 4)

where V(d, k) is given by
8

V(d,k) = 36

[-[k(k? — 1Dk —2)(k—3)(k—4) + 21k(k? — 1)(k — 2)(k — 3)
k

1-d

+ 138k(k? — 1)(k — 2) + 330k(k? — 1) + 252k(k + 1) + 36(k + 1)]
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—[6k(k? — 1)(k — 2)(k — 3) + 105k(k? — 1)(k — 2) + 552k(k? — 1) + 990k(k + 1)
k

+1

+504(k + 1) + 36]m

k+2
—[30k(k? — 1)(k — 2) + 420k(k? — 1) + 1656k(k + 1) + 1908(k + 1) + 504] a—as
k+3
—[120k(k? — 1) + 1260k(k + 1) + 3312(k + 1) + 1980] a—ao°
k+4 dk+5
—[360k(k+ 1 2520(k+1 3312 ————[720(k+ 1 2520 —
[360k(k +1) +2520(k + 1) + 3312) 735~ [720(k + D) +2520] 7z
dk+6 720d° 2520d* 331243 1980d? 504d 36

-7

Mowflar ao aoaco tao tao)
(5)

and d = (1 —A)2. For large values of k (k - o), the asymptotic variance of the statistic Qy
becomes

Var(Qy) = V(d, ©)o%(n). (6)
where

_ A% 720d° N 2520d* N 3312d° N 1980d? ,_504d 36
T36|(1-d)7 (Q1-d)°f (1-d)° (A-d* A-d)3 @1A-4d)2

(1)

The derivation of the mean and the variance of the statistic Qy is provided in the Appendix in
detail.
Consequently, the control limits of the S2-QEWMA chart are given by

LCLx = pr(n) — LyV(Q)
CLx = pr(n) (8)
UCLy = pr(n) + LyV(Q),

with L >0 being the control chart multiplier. For simplicity purposes, the asymptotic control limits
are used for the construction of the S2-QEWMA control chart, by computing the variance of the
statistic Q. given in Eq. (6). The S2-QEWMA chart is designed by plotting the statistic Q. versus
the subgroup number k. The process is considered to be OOC when Qi < LCLy or Qy = UCLy;
otherwise, it is said to be IC.

V(d,k — o)

3. Performance evaluation of the S -QEWMA chart

In the current section, we examine the efficiency of the S2-QEWMA chart. Traditionally, the
statistical performance of a control chart is measured using the ARL, the SDRL and the percentile
points. Particularly, the ARL is described as the average number of statistics that must be plotted
on a chart until an OOC signal is raised. When the process variability is IC (t = 6,/0y, = 1), a
large value of IC ARL (ARL,) is suggested to avoid false alarms. Nevertheless, when the process
is OOC, i.e. T+ 1, asmall OOC ARL (ARL,) value is preferable so as to detect the shift in the
process variability quickly. Here, both the ARL and SDRL measures are used to examine the
performance of the S2-QEWMA control chart.

The run-length distribution of the proposed S2-QEWMA chart is evaluated via a Monte-Carlo
simulation algorithm using the R statistical software. The algorithm is run 10000 iterations, so as
to calculate the mean and the standard deviation of the 10000 run-lengths. We assume that the
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process for the IC state is normally distributed with py = 0 and o; = to, (t = 1.00), whereas the
OOC process follows the Normal distribution with mean p; = 0 and standard deviation o; =
10, (T # 1.00). Furthermore, the statistical design of the S2-QEWMA chart requires the finding
of the (A, L) design parameter combinations, in order to achieve a pre-fixed ARL, value fora
specified value of the sample size n. Consequently, the L values are obtained via Monte-Carlo
simulations considering the asymptotic control limits of the S2>-QEWMA chart given in Eq. (8),
by calculating the asymptotic variance of statistic Qi given in Eq. (6), for various A and n values
when ARL, =200, 370 and 500.

Table 2 provides the (A,L) design parameter combinations of the S2-QEWMA control chart
with A € {0.10,0.15,...,0.95,1.00}, when n € {3,5,7,9} and ARL, =200, 370 and 500. Tables Al
and A2 in the Supplementary Material present the ARL and the SDRL (in the parenthesis) results
of the S2-QEWMA control chart with A € {0.10,0.15,0.20,0.25,0.30,0.35, 0.40,0.50} using
asymptotic control limits, when n € {5,9} as well as ARL, = 200 and 370. It is to be noted that, the
dispersion shifts between o, and 0, = to,, where t = z—z € {0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 1.00,

1.05, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00}. In case of t < 1.00, we refer to
downward shifts, whereas T > 1.00 is related with the upward shifts. The smallest ARL; values
are indicated with bold print for each shift T in Tables A1 and A2 in the Supplementary Material as
well.

Table 2. (A, L) parameter combinations for the S2-QEWMA control chart whenn € {3,5,7,9} and, ARL, ~ 200,370 and
500

ARL, ~ 200 370 500
A | n=3 5 7 9 3 5 7 9 3 5 7 9

0.10 | 2.1354 1.6908 1.6140 15830 | 2.1364 1.9165 1.9053 1.8839 | 2.1551 2.0432 2.0355 2.0250
0.15 | 1.8600 1.8110 1.7975 1.7840 | 2.1069 2.0890 2.0832 2.0800 | 2.2334 22225 22185 2.2165
0.20 | 1.9630 1.9550 1.9445 1.9410 | 2.2275 2.2255 2.2272 2.2256 | 2.3555 2.3542 23520 2.3520
0.25 | 2.0682 20712 2.0655 2.0600 | 2.3330 23325 2.3340 2.3300 | 2.4531 2.4538 2.4535 2.4520
0.30 | 21556 2.1610 2.1608 2.1590 | 2.4160 2.4186 2.4180 2.4148 | 25300 25360 2.5365 2.5346
0.35 | 22350 22110 22450 2.2450 | 2.4860 2.4930 2.4912 2.4930 | 2.6000 2.6040 2.6040 2.6080
040 | 2.3025 23135 23200 2.3150 | 2.5460 25565 2.5540 2.5605 | 2.6600 2.6670 2.6625 2.6723
050 | 2.4222 24310 2.4376 2.4410 | 2.6520 2.6550 2.6640 2.6685 | 2.7640 2.7580 2.7690 2.7782
0.60 | 25170 25300 25350 2.5500 | 2.7475 2.7400 2.7515 2.7620 | 2.8565 2.8390 2.8486 2.8605
0.70 | 2.6084 26089 2.6198 2.6340 | 2.8500 2.8062 2.8209 2.8350 | 2.9640 2.8975 2.9179 2.9270
0.75 | 2.6560 26318 2.6500 2.6650 | 2.9010 2.8250 2.8445 2.8550 | 3.0125 2.9190 2.9346 2.9470
0.80 | 2.7050 2.6445 26700 2.6850 | 2.9455 28342 2.8530 2.8710 | 3.0560 2.9240 2.9405 2.9568
0.90 | 2.7700 26330 2.6489 2.6740 | 2.9820 2.8275 2.8205 2.8420 | 3.0785 2.9200 2.9033 2.9200
0.95 | 2.7825 26345 26170 2.6530 | 2.9790 2.8275 2.7905 2.8120 | 3.0695 2.9166 2.8736 2.8905
1.00 | 27910 2.6384 25990 2.6370 | 2.9810 2.8280 2.7855 2.7940 | 3.0692 2.9135 2.8750 2.8725

The results in Tables Al and A2 in the Supplementary Material reveal that:

o Small A values are preferable for detecting moderate downward to small upward shifts (0.80 <
T < 1.20) in the variability.

o Large values of A are recommended for detecting large downward (t < 0.80) and moderate to
large upward (t > 1.20) shifts in the variability.

e As the ARL, decreases, both the ARL, and SDRL, decrease for all the examined t and n values.

e Generally, the efficiency of the S2-QEWMA chart improves, as the sample size n increases.
However, the opposite happens for the ARL measure at i) A = 0.10 and T = 1.20 when ARL, =
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200, ii) A= 0.10 and T > 1.30 when ARL, ~370, iii)A = 0.15 and T > 1.70 when ARL, ~
200, as well as iv) A = 0.15 and T = 2.00 when ARL, ~370.

e The SDRL, decreases as the n value increments for the majority of the examined scenarios,
except for the cases that A = 0.25,0.30 and 0.40 when ARL, = 200.

e Both ARL, and SDRL, decrease, asthe t value increases or decreases for the examined A cases.

e The S?-QEWMA chart is more sensitive in detecting the upward shifts than the downward
shifts in the variability. For instance, when ARL, =370 and n = 5, the ARL, values of the S2-
QEWMA control chart with A = 0.10,0.20 and 0.30, at T = 0.90, are 78.08, 82.17 and 101.20,
respectively, whereas the corresponding ARL, values at T = 1.10 are 48.85, 63.86, and 71.19.
Nevertheless, the results show that the proposed chart with A = 0.50 is less efficient in
detecting large upward shifts than large downward shifts in the variability.

4. Performance comparisons

Here, we compare the performance of the S2-QEWMA chart with that of some recently developed
memory-type control charts in the literature, such as the S2-GWMA, S2-EWMA, S2-CUSUM, CS-
EWMA, S2-HEWMA, S2-TEWMA and S2-DGWMA charts. We use run length measures, like the
ARL and the SDRL. For a pre-fixed ARL, value, the control chart with the smaller ARL; value can
detect the shift faster compared with the other competing control charts. Consequently, in order to
have fair comparisons, we take into consideration these control charts assuming two-sided
asymptotic control limits, ARL, =370 as well as n = 5. Tables A3 to A8 in the Supplementary
Material present the ARL and SDRL (in the parenthesis) results of these charts, for the same t values
(0.50 < T < 2.00) as in Section 3. Note that the design parameters of the S2-GWMA, S2-EWMA,
S2-CUSUM, CS-EWMA, S2-HEWMA, S?2-TEWMA and S2-DGWMA charts are obtained through
Monte-Carlo simulations such that ARL, ~370 and n = 5. The considered control charts are briefly
described, and compared individually with the proposed S?-QEWMA chart.

e S2-QEWMA chart versus S2.-GWMA chart
The plotting statistic of the S2-GWMA chart is given by
G = 21 (q07Y% = @) Tiejir + <Gy, fork = 1,2, .. (9)

with the statistic Ty, being given by the Eq. (1), q € [0, 1) being the design parameter, a > 0 being
the adjustment parameter and G, = Q, being the starting value. The asymptotic control limits of the
S2-GWMA chart are given by

LCL = pr(n) — Lop(m)vD
CL = pr(n) (10)
UCL = pp(n) + Lop(n)vD

. o a2
where L(>0) is the control chart multiplier, D = lim Dy and Dy = Y (qU V" —g"), k=

1,2,.... Itis also worth mentioning that, the S2-GWMA chart reduces to the S2-EWMA chart when
q = 1—2and a = 1.00, where A € (0.00,1.00] is the smoothing parameter of the latter chart. In
order to construct the S2-GWMA chart, we plot, the statistic G, versus the sample number k. The
process is declared as OOC, when Gy < LCL or Gy = UCL; otherwise the process is considered to be
IC. Table A3 in the Supplementary Material presents the ARL and SDRL (in the parenthesis) values
of the S2-GWMA chart for various (g, a, L) combinations when ARL, ~370 and n = 5.

According to Tables A2 and A3 in the Supplementary Material, the proposed chart is more
efficient than the S2-GWMA chart in detecting small downward to small upward shifts. For instance,
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we observe that the S2-QEWMA (1 = 0.15) chart is better than the S2-GWMA (q = 0.85,a €
{1.00, 1.20}) chart at small shifts (0.80 < 7 < 1.20) in the variability. The S2-QEWMA (1 = 0.20)
chart has lower ARL; and SDRL, values than the S2>-GWMA (g = 0.80,« = 1.00) (i.e. S>-EWMA
(A =0.20)) chartat 0.80 < 7 < 1.10, except at T = 1.05. Additionally, the S2>-QEWMA (1 = 0.50)
chart is more efficient than the S2-GWMA (g = 0.50, a = 1.20) chart in detecting shifts of size
0.50 <7< 1.00 and 1.10 < 7 < 1.30. Particularly, the performance of the S?-QEWMA chart
improves as A(q) increases (decreases) in detecting downward shifts compared with the S2-GWMA
chart. For example, the S2-QEWMA (1 = 0.10) chart is more sensitive than the S2>-GWMA (q =
0.90,a = 0.80) chartat 0.90 < 7 < 1.00, the S2-GWMA (q = 0.75,a = 1.00) (i.e. S>-EWMA (1 =
0.25)) chart is less effective than the S2-QEWMA (1 = 0.25) chartat 0.70 < 7 < 1.00 and 7 = 1.10,
the S2-QEWMA (1 = 0.30) chart has lower ARL; and SDRL,; results than the S2-GWMA (q =
0.70,a = 1.20) chart at 0.60 <7 <1.00 and 1.10 <7 < 1.20, and the S?>-QEWMA (1€
{0.40,0.50}) chart is better compared with the S>-GWMA (¢ € {0.60,0.50},« € {0.80,1.00}) chart
at 0.50 < 7 < 1.00. It should also be pointed out that, the S2-QEWMA chart shows lower SDRL,
values than the competing chart for most of the considered scenarios and t values. Nevertheless,
there are cases that the S?>-GWMA chart has better ARL performance than the proposed chart for
upward shifts. For example, the S2-GWMA (g = 0.75,« = 1.00) (i.e. S2-EWMA (A =0.25)) chart
has lower ARL,; values than the S2-QEWMA (A = 0.25) chart at 7 = 1.05 and 7 > 1.20.
Furthermore, the S2-GWMA (q = 0.60,« = 0.80) and S>-GWMA (g = 0.60, a = 1.20) charts have
better ARL, values than the S2-QEWMA (1 = 0.40) chart at T > 1.00 and T > 1.20, respectively.

e S2-QEWMA chart versus S2-CUSUM chart

The plotting statistics of the S2-CUSUM chart are given by

Ci = max[0, Ci_, + pr(n) — Ty — K]

fork=1,2,.. 11
Ci = max[0,Cf_y + Ty —pr(@) =K'~ 7 )

where the statistic Ty is given by Eq. (1), K(= 0) is the reference value and C; = C¢ = 0 are the
starting values. The Cy and C; statistics are plotted against the decision interval H. The process is
declared as OOC, if either of the two statistics is plotted above H(= 0). Table A4 in the
Supplementary Material presents the ARL and SDRL (in the parenthesis) results of the S2-CUSUM
chart for various (K, H) combinations when ARL, =370 and n = 5.

Tables A2 and A4 in the Supplementary Material indicate that the S2-QEWMA chart is more
efficient than the S2-CUSUM chart in identifying large downward to small upward shifts in the
variability. For example, the S2-QEWMA chart with A € {0.15,0.20, 0.25} is more effective than the
S2-CUSUM chart with K = 0.50 at 0.80 < t < 1.20. Furthermore, the S2-QEWMA chart with A =
0.25 is better than the S2-CUSUM chart with K = 1.00 at 0.60 < T < 1.20, and the S2-QEWMA
chart with A = 0.40 is more efficient than the S2-CUSUM chart with K = 1.25 at 0.50 < t < 1.00
as well as 1.10 < t < 1.30. Nevertheless, the opposite is observed for the ARL measure in case of
moderate to large upward shifts. For instance, the S2-CUSUM chart with K = 0.50 has lower ARL,
values than the S2-QEWMA chart with A € {0.15,0.20,0.25} at t > 1.20. Finally, the SDRL
performance of the S2-QEWMA chart is better than that of the S2-CUSUM chart for most of the
examined cases.

e S2-.QEWMA chart versus CS-EWMA chart

The charting statistics of the CS-EWMA chart are defined as
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M = max[0,Mic_; + pr(n) — Zi — K]

fork = 1,2, .. 12
M; = max[0,Mj_, + Zi — pr(n) = KT o 7% (12)

where Zy = ATy + (1 — A)Zy_, fork =1,2,..., A € (0, 1] is the smoothing parameter, M; = M} =
0 are the starting values, and K’ = K¢g f is the reference value with K¢g > 0. The statistics M

and M; are plotted against the decision interval H' = H¢g / , While the process raises an OOC

signal if either My or My’ is plotted over the H'. The ARL and the SDRL (in the parenthesis) values
for the CS-EWMA chart are displayed in Table A5 in the Supplementary Material for various
(A, Kcs, Hes) combinations when ARL, =370 and n = 5.

Tables A2 and A5 in the Supplementary Material reveal that the proposed chart has lower ARL,
values compared with the CS-EWMA chart in detecting small shifts. For instance, the S2-QEWMA
(A € {0.15,0.20,0.25}) chart is more sensitive than the CS-EWMA (A € {0.15,0.20,0.25},K¢cs =
1.00) chartat 0.90 < t < 1.10, the S?>-QEWMA (A = 0.30) chart is better than the CS-EWMA (A =
0.30,Kcs = 1.00) chart at 090 < t<1.00 and t=1.10, and the S?-QEWMA (A €
{0.35,0.40,0.50}) is more efficient than the CS-EWMA (A € {0.35,0.40,0.50}, K¢ = 1.00) chart
at 0.90 < t < 1.00, while the opposite is observed for the remaining t values. It should be pointed
out that, the S2-QEWMA (A € {0.15,0.20, 0.25}) chart has better SDRL performance compared with
that of the CS-EWMA (A € {0.15,0.20,0.25}, K5 = 1.00) chart for most of the considered t values.
As A increases, the S2-QEWMA chart has lower SDRL; values than the CS-EWMA chart for
downward, as well as moderate to large upward shifts in the variability. For example, the S2-
QEWMA (A = 0.35) chart has lower SDRL, results than the CS-EWMA (A = 0.35,Kcs = 1.00)
chartat 0.50 <t < 1.00 and 1.30 < T < 2.00.

e S2-QEWMA chart versus S2.-HEWMA chart

The plotting statistic Y of the S2-HEWMA chart is given through the following system of equations

Yo =MZk + (1 — A1) Y

fork=1,2, ... 13
Zy = AT+ (1 - 7\2)Zk—1} (13)

where Ty is given by Eq. (1), A, A, € (0, 1] are the smoothing parameters, and Y, = Z, = Q, are the
starting values. Given A; # A,, the asymptotic control limits of the S2>-HEWMA chart are given by

LCL = pr(n) — LGT(H)

F11-(1-2)%  1-(1-21)(1-2p)
CL— () (14)

x A (122 2(1-A)(1-A
UCL = () + Loy (n) (222 ) [, ;20 - 2000

mz JZ (1-2)? 2(1-21)(1-1)

where L(> 0) is the control chart multiplier. When A; = A,, the asymptotic control limits of the S2-

HEWMA chart are given by
A(2—2A+22
LCL = pr(n) — Lot(n) ’ﬁ
CL = pr(n) (15)

[A2-22+22
UCL = pr(n) + Lor(n) ((2_—};)

The S2-HEWMA control chart is designed by plotting the statistic Y, versus the subgroup number
k. The process is considered to be IC, if LCL < Y, < UCL. Table A6 in the Supplementary Material
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provides the ARL and the SDRL (in the parenthesis) values of the S2-HEWMA chart for various
(A1,2,, L) combinations when ARL, ~370 and n = 5.

The comparison of the results between Tables A2 and A6 in the Supplementary Material indicates
that the proposed chart is better than the S2-HEWMA chart in detecting small deviations in the
process dispersion. Particularly, as the A value increases, the ARL performance of the S2-QEWMA
chart improves in detecting moderate to large downward shifts compared with the competing chart.
Additionally, the proposed chart has better SDRL performance than that of the S2-HEWMA chart
for most of the examined cases and T values. For example, the S>-QEWMA (A = 0.15) chart has
lower ARL; values at 0.90 <t < 1.10, as well as lower SDRL,; values at 0.50 < t < 2.00, in
comparison with the S2-HEWMA (A, = 0.15,2, € {0.15,0.20,0.25,0.30, 0.35, 0.40,0.50}) chart.
Furthermore, comparing the S?-QEWMA (A =0.35) and S? —-HEWMA (A; =0.35,1, €
{0.35,0.40,0.50}) charts, we observe that the first chart has better ARL performance at 0.70 < T <
1.00 and Tt = 1.10, as well as better SDRL performance at 0.50 < t < 1.00 and 1.10 < t < 2.00
than the latter chart.

e SZ-QEWMA chart versus S2--TEWMA chart

The plotting statistic Wy, of the S2-TEWMA chart is given through the following system of equations

Zk = )\Tk + (1 - )\)Zk—l
Yk = AZk + (1 - A)Yk—l for k= 12,.. (16)
Wk = AYk + (1 - A)Wk—l

where Ty is given by Eq. (1), A € (0, 1] is the smoothing constant, and W, =Y, = Z, = Q, are the
starting values. The asymptotic control limits of the S2-TEWMA chart are given by

6(1-A)6A | 12(1-A)*AZ = 7(1-A)2A3 A
LCL:uT(n)—LGT(n)J[ ot e T s +(z—x)2]

CL = prp(n) (17)

6(1-A)°6A  12(1-A)*A%  7(1-2)2A3 A%
UCL=uT(n)+LGT(n)\/[ ot et ot o)

where L(> 0) is the control chart multiplier. The S2-TEWMA chart is constructed by plotting the
statistic Wy versus the sample number k and the process raises an OOC signal, when Wy < LCL or
Wy = UCL. The ARL and SDRL (in the parenthesis) values of the S?>-TEWMA chart are presented
in Table A7 in the Supplementary Material for various (A, L) combinations when ARL, =370 and
n=>5.

Tables A2 and A7 in the Supplementary Material reveal that the S2-QEWMA chart is more
sensitive than the S2-TEWMA chart in identifying small upward and downward shifts in the
variability. Additionally, as the parameter A increments, the proposed chart becomes more efficient
than the S2-TEWMA chart in detecting moderate to large downward shifts. However, we observe
that, the S2-QEWMA chart with A € {0.40, 0.50} is less efficient than the competing chart for small
upward shifts. In case of the moderate to large upward shifts, the S2-TEWMA chart shows lower
ARL, values than the proposed chart. It must be noted that, the S2-QEWMA chart shows better SDRL
performance for most of the examined A and t values, except e.g when i) A =0.10 at 0.50 < T <
0.60,ii)A=0.15at1.90 < Tt < 2.00,iii)A = 0.40att = 1.05,andiv) A = 0.50at 1.05 < t < 1.10.
For example, the S2-QEWMA (A = 0.20) chart has lower ARL, results at 0.90 < t < 1.10, while it
has lower SDRL; results at 0.50 <t < 2.00 compared with the S2-TEWMA (A = 0.20) chart.
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Furthermore, the S2-QEWMA (A = 0.40) chart has better ARL performance at 0.70 <t < 0.95 and
T = 1.10, as well as better SDRL performance at 0.50 < t < 0.95 and 1.05 < t < 2.00, compared
with the S2-TEWMA (A = 0.40) chart.

e S2-QEWMA chart versus S2-DGWMA chart
The plotting statistic of the S2-DGWMA chart is defined through the following system of equations

Gi = 254 (q07V% = @) Tiejur + 45" Go

- a o o Jfork=1,2,.. (18)
DGy = X1 (q9™" — ¢)Giojsr + 9¥' DGy

where the statistic Ty is given by Eq. (1), q € [0, 1) is the design parameter, « > 0 is the adjustment
parameter and DG, = G, = Q, are the starting values. The asymptotic control limits of the S2-
DGWMA chart are given by

LCLy = pr(n) — Lor(n)VF
CLk = pr(n) (19)
UCLy = pr(n) + Lor(m)VF

— i _ k k k—u)® k- a Y4 i o 2
where F = lim Fy. and Fy = T (T (g™ — qlemurD®) (qumD® — qu=i+D¥)) The 2.

DGWMA chart is designed by plotting the statistic DGy versus the sample number k. The process is
declared as IC, when LCL < DGy < UCL; otherwise, it is considered to be OOC. It is important to
note that, the S2>-DGWMA chart reduces to the S2-HEWMA chart when q=1—-A,a=1and A =
A1 = A,. Table A8 in the Supplementary Material presents the ARL and SDRL (in the parenthesis)
values of the S2-DGWMA chart for various (q, a, L) combinations when ARL, ~370 and n = 5. It is
to be noted that the ARL and SDRL results of the S2-DGWMA (q=1—2A,a = 1) chart are
presented in Table A6 forA = A; = A,.

The comparison of the results between Tables A2 and A8 in the Supplementary Material shows
that the S2-QEWMA chart is better than the S>-DGWMA chart in detecting small shifts in the
process dispersion. Furthermore, as the A value increments, the ARL performance of the S2-
QEWMA chart is better in detecting moderate to large downward shifts in comparison with the
competing chart. Additionally, the newly developed chart has better SDRL performance than that of
the S2-DGWMA chart for most of the examined scenarios and t values. For instance, the S2-
QEWMA (A = 0.25) chart has lower ARL, values at 0.80 < t < 1.20 in comparison with the S2-
DGWMA (q = 0.75,a = 1.20) chart. Furthermore, the S2-QEWMA (A = 0.30) chart has better
SDRL, results at T < 1.00 and t = 1.40 in comparison with the S2>-DGWMA (q = 0.70,a = 0.80)
chart.

5. An lllustrative example

In the current example, a simulated dataset is used in order to illustrate the application of the S2-
QEWMA control chart. A dataset with 30 samples of size n = 5 is generated, in which the Xy, k =
1,2,...,30,and j = 1,2,...,5, are mutually independent and follow the N(u,, 0, = T0y). The first
10 samples are generated from N(yy = 15,0, = 1.50) (t = 1.00). However, a shift of 0; = 1.100,
(tr =1.10) is added in the standard deviation of the remaining 20 samples. The simulated data, are
provided in Table 3.
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Table 3. Data and Calculation Details

Sanllple, Simulated Data Ty | S2-EWMA| S2.CUSUM | CS-EWMA | S2.HEWMA| S2-TEWMA| S2-GWMA| S2-QEWMA
1 18.418 21.277 20.400 17.783 21501 | 0.574 0.284 0.000 0.067 | 0.000 0.000 0.226 0.214 0.284 0.212
2 21.667 21.036 18.114 22.398 20.986 | 0.461 0.319 0.000 0.020 | 0.000 0.000 0.244 0.220 0.305 0.213
3 21.877 19.301 20.232 19.997 18.280 | -0.142 0.227 0.000 0.000 | 0.000 0.000 0.241 0.224 0.205 0.215
4 20.605 18.455 20.073 19.103  20.344 | -0.988 -0.016 0.496 0.000 | 0.000 0.000 0.189 0.217 -0.021 0.216
5 19.728 18.197 23577 19.324 20.847 | 1.229 0.233 0.000 0.722 | 0.000 0.000 0.198 0.213 0.277 0.215
6 20932 19591 21.396 21.063 17.676 | 0.281 0.243 0.000 0.495 | 0.000 0.000 0.207 0.212 0.245 0.215
7 19.080 21491 17.479 20.389 23.113 | 1.439 0.482 0.000 1.426 | 0.000 0.141 0.262 0.222 0.477 0.216
8 20.458 19.154 19.134 18.480 21.690 | -0.219 0.342 0.000 0.700 | 0.000 0.142 0.278 0.233 0.290 0.220
9 22231 20185 19111 18760 17.934 | 0.516 0.376 0.000 0.708 | 0.000 0.177 0.298 0.246 0.346 0.225
10 18.072 21.237 21.660 21.351 19.035 | 0.430 0.387 0.000 0.631 | 0.000 0.224 0.316 0.260 0.354 0.232
11 17.495 19.264 21.702 21.226 19.874 | 0.547 0.419 0.000 0.670 | 0.000 0.302 0.336 0.275 0.386 0.241
12 22522 21.382 19.428 20.096 22.055 | -0.178 0.300 0.000 0.000 | 0.000 0.261 0.329 0.286 0.263 0.250
13 20.701  17.096 17.614 20.543 20.869 | 0.874 0.415 0.000 0.366 | 0.000 0.335 0.346 0.298 0.402 0.259
14 20.196 18.640 18,591 21.173 18.185 | -0.245 0.283 0.000 0.000 | 0.000 0.277 0.333 0.305 0.253 0.268
15 19.022  19.303 17.344 21.736 22.150 | 1.160 0.458 0.000 0.652 | 0.000 0.394 0.358 0.316 0.453 0.278
16 19.450 23238 20.160 18.333 20.516 | 0.828 0.532 0.000 0.972 | 0.000 0.585 0.393 0.331 0.498 0.289
17 22974 20.602 21520 17.284 20.762 | 1.310 0.687 0.000 1.774 | 0.000 0.932 0.452 0.355 0.638 0.302
18 20.174 20.783 22.052 18122 20.301 | 0.052 0.560 0.000 1.319 | 0.000 1.151 0.474 0.379 0.481 0.317
19 17.094 18.703 18.688 20.574 18.761 | -0.326 0.383 0.000 0.485 | 0.000 1.193 0.455 0.394 0.327 0.333
20 21.483 21.602 17.987 17.478 22418 | 1.632 0.633 0.000 1.609 | 0.000 1.485 0.491 0.414 0.617 0.349
21 20.846 21.254 20973 21.588 23.930 | -0.252 0.456 0.000 0.849 | 0.000 1.600 0.484 0.428 0.401 0.365
22 19.288 23245 20.663 16.931 18.980 | 1.715 0.708 0.000 2.057 | 0.000 1.967 0.529 0.448 0.685 0.381
23 18.717 22,013 19.200 20.510 21.758 | 0.165 0.599 0.000 1.715 | 0.000 2.225 0.543 0.467 0.534 0.398
24 18.591  20.650 19.393 20.554  21.603 | -0.442 0.391 0.000 0.765 | 0.000 2.275 0.512 0.476 0.345 0.414
25 20.227 17.806 21.449 21.948 19.326 | 0.534 0.419 0.000 0.791 | 0.000 2.354 0.494 0.480 0.418 0.427
26 20.363 21.230 18.841 17.383 17.204 | 0.752 0.486 0.000 1.036 | 0.000 2.499 0.492 0.482 0.487 0.438
27 20.614 19.778 21529 18.868 21.625 | -0.444 0.300 0.000 0.085 | 0.000 2.459 0.454 0.476 0.290 0.446
28 19.630 20.128 17.273 21570 20.196 | 0.340 0.308 0.000 0.000 | 0.000 2.426 0.425 0.466 0.333 0.450
29 19.868 18.380 19.463 19.516 21.847 | -0.259 0.195 0.000 0.000 | 0.000 2.280 0.379 0.449 0.222 0.450
30 21.086 20.464 21711 21.643 19.794 | -1.166 -0.078 0.674 0.000 | 0.000 1.861 0.287 0.416 -0.029 0.443

Assuming ARL, ~ 370, we construct the proposed S2-QEWMA (A = 0.20,L = 2.2255) chart,
along with the S2-EWMA (A =0.20,L = 2.8004) (i.e. S*-GWMA (q = 0.80,a = 1.00,L =
2.8004)), S2-CUSUM (K = 0.50,H = 4.412), CS-EWMA (A = 0.20,Kcs = 1.00,Hcs = 8.74),
S2-HEWMA (A, = 0.20,A, = 0.20,L = 2.517) (i.e. S?*-DGWMA (q=0.80,a = 1.00,L =
2.517)), S:-TEWMA (A= 0.20,L = 2.332) and S2-GWMA (q = 0.80,a = 0.80,L = 2.8099)
charts with asymptotic control limits. The calculation details of the plotting statistics of all the
considered charts are displayed in the aforementioned Table as well. Figures 1 to 7 present the S2-
EWMA, S2-CUSUM, CS-EWMA, S2-HEWMA, S2-TEWMA, S2-GWMA and S2-QEWMA charts,
respectively. We observe that the samples 24 to 30 raise an OOC signal in the S2-QEWMA chart,
the samples 24 to 27 raise an OOC signal in the S2-TEWMA chart, while the remaining charts fail
to detect the change in the process standard deviation.
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Figure 3. CS-EWMA chart with (A, K.g,H¢eg ) =
(0.20,1.00,8.74), ARL, ~370andn =75

Figure 4. S2-HEWMA chart with (A;,A,,L) =
(0.20,0.20,2.517), ARL, ~370 and n=5
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Figure 5. S2>-TEWMA chart with (1,L) = Figure 6. S2-GWMA chart with (q,a, L) =
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Figure 7. S2-QEWMA chart with (1,L) = (0.20,2.2255), ARLy, =370andn = 5

6. Conclusions

In this article, we introduce a novel control chart called the S>-QEWMA chart, which utilizes a
three-parameter logarithmic transformation to the sample variance, serving as an EWMA-type
chart for monitoring the process dispersion. We conduct numerous Monte-Carlo simulations to
determine the design parameters for the S2-QEWMA chart. Our evaluation study reveals that
this chart exhibits increased sensitivity asthe sample size grows. Additionally, we recommend
using small A values for detecting small deviations in the process variability, while larger A values
are more suitable for identifying moderate to large upward shifts. Furthermore, we perform a
comparative analysis of the newly proposed S2-QEWMA chart against several established
memory-type control charts designed for monitoring the process variability, including the S2-
GWMA, SZ2-EWMA, S2-CUSUM, CS-EWMA, S2-HEWMA, S2-TEWMA, and S2-DGWMA
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charts. The results of this comparison study indicate that the S2- QEWMA chart outperforms
its competitors, especially in detecting small shifts in the process dispersion. To illustrate the
implementation of our proposed chart and the aforementioned competing control charts, we
provide a practical example. In future research, it would be valuable to explore the variable
sampling interval version of the S2-QEWMA control chart or assess the performance of the S2-
QEWMA chart under different smoothing parameters.
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Appendix

A.The following Lemma will be helpful in deriving the expectation and the variance of Qy.
LemmalForanyk>1and0 < d < 1, we have
k
Zldl—l _ 1 — dk*t C(k+ 1)dk
- a-a2) \a-a)

k
L, [k + 1)d<? 2k + Dd¥]  [2(1 - d**)
lZl(l-l)d‘z_—[ — ]—[(1_d)2]+[(1_d)3 ,
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k
L [k —1)d*? k(k + 1)d<? (k + 1)dk 1 — dk+t
;1(1_1)(1_2)d13__[ B i = R [ R e

k(k? — 1)(k — 2)d¥3 k(k? — 1)d*<2 k(k + 1)d<*
1-d ]_ [ (1 - d)? ]_ [ (1—d)3 ]

k
Zl(l — 1D =2)( - 3)d"* = —[
1=1

(k + 1)d® A 1 — dk+t
(1—d)4] [(1—d)5 ’

k(k2 —1)(k-2)(k—3)d** 5k(k?—1)(k — 2)d*3
21(1—1)(1 2)(1—3)(1 - 4)d~5 = — - =y -
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B. Derivation of an explicit form of Qy

Eg. (2) can be rewritten as
Z = AT (1= DT + (1 - )kZ,
Y = AXE (1 - D57 + (1 - DKY,
Wi = A2 (1 — DR, + (1 - Dkw,
Qe = AT, (1 =D TW + (1 -0FQ

From Eq. (20), we get after algebraic simplification the following

=12,.. (20)

Y =223, A -0 k—-i+ DT, + Ak + 1) (1 — )XY,
Z“ =Mk —i+ Dk —i+ 2T+ (2 2k )
[AKQAK + A+ 2) + 2]W, \ (21)

= z LA =D k—i+D&k—i+2)(k—i+3)T, +
(1 A)

[Ak{A(k + 1)(AKk + 22+ 3) + 6} + 6]Q,
C. Derivation of E(Qy)
From Eq. (21), we get
A% .
E(Q) = Z2(1 — DR — i+ Dk — i+ 2)(k — i + 3)E(T})

(1-nk
* 6

[Ak{A(k + 1)(Ak + 21 + 3) + 6} + 6]Q,
Letd = 1 — A. Then
k

2(1 Rk — i+ Dk —i+2)(k—i+3)

k k

Zu(u+1)(u+2)d“ 1 —Zu(u—l)(u—Z)d“ 1+6Zu(u—1)d“ 1+6Zud“ 1

u=1 u=1 u=1
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(k+D&+2)(k+3)dc  3(k?+5k+6)d<*t  6(k +3)d<t2 6d<+3 6
1—d T a-d2 (-4 d-a'Ta-or

Therefore,

= ,

g2(1 Rk — i+ Dk —i+2)(k—i+3)
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= — ( X c X a2 5 ) — Ak + 3)d**? —dk*3 + 1

Again, after simplification, we get
(1- )k

[Ak{A(k + 1)(Ak + 212 + 3) + 6} + 6]
Bk + 1)k +2)(k+3)d*  2%2(k? + 5k + 6)dk+?
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+ Ak + 3)d¥*+2 4 dk+3,
From above, it follows that

E(Qx) = ur(n). (22)

D. Derivation of Var(Qy)
From Eq. (21), we get

Var(Qy) = ;“—6Z(k —i+ 1D2(k—i+2)%k—i+3)21 —1)2ED|s2(n).

Letd = (1 — A)2. Then
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Using Lemma 1 we get, after simplification,
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Therefore

Var(Qy) = V(d,k)o%(n). (23)
where

V(d, k) = [ [k(k?—=1Dk—-2)(k—3)(k—4) + 21k(k?* - 1)(k — 2)(k — 3) + 138k(k* — 1)(k — 2) +
k

330k(k? — 1) +252k(k + 1) +36(k + 1)] 7—=— [6k(k? — (k= 2)(k = 3) + 105k(k? ~ 1)(k — 2)

k+1

+552k(k? — 1) + 990k(k + 1) + 504(k + 1) + 36] ———— — [30k(k? — 1)(k — 2) + 420k(k? — 1)

(1-d)?
k+2
1656k(k + 1) + 1980(k + 1) + 504] ———
+ (k+1) +1980(k + 1) + 504] 7
k+3
—[120k(k? — 1) + 1260k(k + 1) + 3312(k + 1) + 1980] a—ar
k+4 k+5
—[360k(k + 1) + 2520(k + 1) + 3312 720(k + 1) + 2520] ———
[360k(k +1) +2520(k + 1) +3312) ;755 = [720(k + 1) +2520) ;7
dk+6 72045  2520d* 3312d3® 1980d%  504d 36

—720

a-o Ha-o a-octa-os Ta-o Ta-o Ta-a
Note that, for large values of k (k — ), the asymptotic variance of the statistic Q, becomes

Var(Qy) = V(d, ®)o%(n). (24)
where
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