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Abstract: Memory-type control charts, renowned for their effectiveness in identifying small 

deviations in the process variance, are commonly used to monitor the process variability. In this 

article, we introduce a new tool, the Quadruple Exponentially Weighted Moving Average 

(QEWMA) chart, which is designed for the specific purpose of monitoring changes in the process 

variability. We refer to this chart as the S2-QEWMA chart. The performance of the S2-QEWMA 

chart is assessed through an extensive series of Monte-Carlo simulations, carefully considering the 

run-length distribution. Comparing it with other well-known memory-type charts, it becomes evident 

that the S2-QEWMA chart excels in its ability to effectively detect small shifts in the process 

dispersion. To illustrate the practical application of this chart, we provide an example. 

Keywords:  average run-length, exponentially weighted moving average, dispersion control chart, 

Monte-Carlo simulations, standard deviation of run-length.  

1. Introduction 

In Statistical Process Control (SPC), two types of variations exist within a production process: 

common causes and assignable causes. A production process is considered to be in statistical control 

(IC) when it is influenced solely by common causes of variation. Conversely, when assignable causes 

of variation stem from external sources, they result in a process going out of statistical control 

(OOC). Control charts play a pivotal role in SPC by detecting assignable causes of variation that can 

impact process parameters, specifically the mean or variance of the process. These charts can be 

categorized into two types: location charts, which are effective at identifying deviations in the 

process mean, and dispersion charts, which are well-suited for detecting variations in process 

dispersion. 

Shewhart-type control charts primarily rely on the most recent observations, making them 

effective at detecting large shifts in process parameters. Conversely, memory-type control charts, 

such as the cumulative sum (CUSUM) chart [1, 2] and the exponentially weighted moving average 

(EWMA) chart [3], take into account both current and past data, rendering them more sensitive in 

identifying small to moderate shifts. Additionally, innovations have been introduced in this field. 

Shamma and Shamma [4] and Zhang and Chen [5] developed the Double EWMA (DEWMA) chart, 
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while Sheu and Lin [6] extended the EWMA chart to create the generally weighted moving average 

(GWMA) chart. Haq [7, 8] proposed the Hybrid EWMA (HEWMA) chart, and Alevizakos, 

Chatterjee, and Koukouvinos [9, 10] introduced the Triple EWMA (TEWMA) and Quadruple EWMA 

(QEWMA) charts for monitoring the process mean. 

 In many industrial applications, it is crucial to monitor the existence of shifts in the process 

dispersion rather than the process mean. Therefore, numerous memory-type dispersion control charts 

have been introduced by prominent scholars. Take for example, Castagliola [11] and Castagliola, 

Celano and Fichera [12], utilized a three-parameter logarithmic transformation to sample variance 

(S2) for the purpose of constructing the EWMA and CUSUM charts, namely the S2-EWMA and S2-

CUSUM charts. Several authors have also utilized this logarithmic transformation to propose control 

charts for monitoring the process variability as well. Abbas, Riaz and Does [13] recommended the 

CS-EWMA chart, Tariq et al. [14] presented the S2-HEWMA chart, Chatterjee, Koukouvinos and 

Lappa [15] introduced the S2-TEWMA chart, while Alevizakos et al. [16, 17] developed the S2-

GWMA and S2-Double GWMA (S2-DGWMA) charts for monitoring the process variability. 

Additionally, a multitude of dispersion control charts have been introduced in the literature. These 

include the works of Reynolds and Stoumbos [18], Castagliola et al. [19], Castagliola, Celano and 

Fichera [20], Shu and Jiang [21], Abbasi et al. [22], Zaman et al. [23], Zhou, Zhou and Geng [24], 

Sanusi et al. [25], Ali and Haq [26, 27], Haq [28, 29], Abbas et al. [30], Huang, Lu and Chen [31], 

Riaz et al. [32], Mahadik, Godase and Teoh [33], Arshad, Noor-ul-Amin and Hanif [34], Haq and 

Razzaq [35], Godase et al. [36], Ajibade et al. [37], Yang, Chen and Lin [38] and Jafari, Maleki and 

Salmasnia [39]. 

In this current article, inspired by the research of Castagliola [11] and Alevizakos, Chatterjee, and 

Koukouvinos [10], we introduce a novel control chart for monitoring process dispersion. This chart 

is based on a 3-parameter logarithmic transformation to S2 and is referred to as the S2-QEWMA 

chart. To assess its effectiveness, we conduct a comparative study with other control charts, including 

the S2-EWMA, S2-CUSUM, CS-EWMA, S2-HEWMA, S2-TEWMA, S2-GWMA, and S2-DGWMA 

charts, using asymptotic control limits. To evaluate these control charts, we employ several Monte- 

Carlo simulations and consider well-established performance measures such as the average run-

length (ARL) and the standard deviation of the run-length (SDRL). These comparisons reveal the 

efficiency of the proposed memory-type chart in detecting minor shifts in process variability. 

The remainder of this article is organized as follows: In Section 2, we will develop the S2-

QEWMA chart. In Section 3, we will examine the performance of this newly developed chart. 

Following that, in Section 4, we will compare its performance with the previously mentioned 

memory-type dispersion charts using measures like the ARL and the SDRL. Section 5 will provide 

an illustrative example to explain how to implement the S2-QEWMA chart. Concluding remarks will 

be summarized in Section 6, and additional technical details of the S2-QEWMA chart can be found 

in the Appendix. 

2. The proposed 𝐒𝟐-QEWMA control chart 

Consider a sample (or a subgroup) Xk1, . . . , Xkn, of n(> 1) independent normal distributed 

N(µ0, τσ0) random variables, where µ0 and σ0 are assumed to be the IC process mean and standard 

deviation, respectively. Here, k represents the sample number, with k taking on values of 1, 2, . . .. If 

τ = 1, then the process is considered to be IC, whereas the process is declared as OOC when τ ≠ 1.  

Our objective is to promptly detect a shift in the process dispersion, from the IC σ0
2 value to the OOC 

σ1
2  =  (τσ0)

2, where τ ≠ 1, while ensuring that the process mean remains at its IC value (µ0). 
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The proposed  S2-QEWMA chart considers a 3-parameter  (a, b, c) logarithmic transformation  

applied to  S2  [40, 41], thus 

 Tk = a + bln(Sk
2 + c), for  k = 1,2,… (1) 

where a = A(n) − 2B(n)ln(σ0), b = B(n), c = C(n)σ0
2, Sk

2 =
1

n−1
∑ (Xkj − X̅k)

2n
j=1  is the  sample  

variance  and  X̅k =
1

n
∑ Xkj
n
j=1  is the  sample  mean.    According  to Castagliola [11],  the  proper  

selection  of the  a,  b,  and  c,  implies  that   the  statistic Tk ≈ N(µT(n), σΤ
2(n)).   Table  1 provides 

the  values of A(n), B(n), C(n),  µT(n)  and σT(n) for sample size n ∈ {3, 4, . . . , 15}, that  originally 

presented in Table I of Castagliola [11]. 

Table 1. Values of A(n), B(n), C(n),  µT(n), σT(n) and Q0 for sample size n ∈ {3, 4, . . . , 15} 

n A(n) B(n) C(n) µT(n) σT(n) Q0  

3 -0.6627 1.8136 0.6777 0.02472 0.9165 0.276 

4 -0.7882 2.1089 0.6261 0.01266 0.9502 0.237 

5 -0.8969 2.3647 0.5979 0.00748 0.9670 0.211 

6 -0.9940 2.5941 0.5801 0.00485 0.9765 0.193 

7 -1.0827 2.8042 0.5678 0.00335 0.9825 0.178 

8 -1.1647 2.9992 0.5588 0.00243 0.9864 0.167 

9 -1.2413 3.1820 0.5519 0.00182 0.9892 0.157 

10 -1.3135 3.3548 0.5465 0.00141 0.9912 0.149 

11 -1.3820 3.5189 0.5421 0.00112 0.9927 0.142 

12 -1.4473 3.6757 0.5384 0.00090 0.9938 0.136 

13 -1.5097 3.8260 0.5354 0.00074 0.9947 0.131 

14 -1.5697 3.9705 0.5327 0.00062 0.9955 0.126 

15 -1.6275 4.1100 0.5305 0.00052 0.9960 0.122 

The plotting statistic Qk of the  S2-QEWMA control chart for monitoring the process variability is 

given by 

 

Zk = λTk + (1 − λ)Zk−1
Yk = λZk + (1 − λ)Yk−1
Wk = λYk + (1 − λ)Wk−1

Qk = λWk + (1 − λ)Qk−1}
 

 
for k = 1,2, … (2) 

where λ is the smoothing parameter with 0 < λ ≤ 1, and Q0 = W0 = Y0 = Z0 = A(n) + B(n)ln(1 +
C(n)) are the starting values. The Q0 values are also provided in Table 1 for n ∈ {3, 4, . . . , 15}. 

The mean of the statistic Qk is given by 

 E(Qk) = μΤ(n).  (3) 

The variance of the statistic Qk is defined as 

 Var(Qk) = V(d, k)σT
2(n) (4) 

where V(d, k) is given by 

V(d, k) =
λ8

36
[−[k(k2 − 1)(k − 2)(k − 3)(k − 4) + 21k(k2 − 1)(k − 2)(k − 3)

+ 138k(k2 − 1)(k − 2) + 330k(k2 − 1) + 252k(k + 1) + 36(k + 1)]  
dk 

1 − d
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−[6k(k2 − 1)(k − 2)(k − 3) + 105k(k2 − 1)(k − 2) + 552k(k2 − 1) + 990k(k + 1)

+ 504(k + 1) + 36]
dk+1

(1 − d)2
 

−[30k(k2 − 1)(k − 2) + 420k(k2 − 1) + 1656k(k + 1) + 1908(k + 1) + 504]
dk+2

(1 − d)3
 

−[120k(k2 − 1) + 1260k(k + 1) + 3312(k + 1) + 1980]
dk+3

(1 − d)4
 

−[360k(k + 1) + 2520(k + 1) + 3312]
dk+4

(1 − d)5
− [720(k + 1) + 2520]

dk+5

(1 − d)6
 

−720
dk+6

(1 − d)7
+ [

720d5

(1 − d)7
+
2520d4

(1 − d)6
+
3312d3

(1 − d)5
+
1980d2

(1 − d)4
+

504d

(1 − d)3
+

36

(1 − d)2
]]. 

  (5) 

and d = (1 − λ)2.  For large values of k (k →  ∞), the asymptotic variance of the statistic Qk 

becomes 

 Var(Qk) = V(d,∞)σT
2(n). (6) 

where 

V(d, k → ∞) =
λ8

36
[
720d5

(1 − d)7
+
2520d4

(1 − d)6
+
3312d3

(1 − d)5
+
1980d2

(1 − d)4
+

504d

(1 − d)3
+

36

(1 − d)2
]. 

  (7) 

The derivation of the mean and the variance of the statistic Qk is provided in the Appendix in 

detail.  

Consequently, the control limits of the S2-QEWMA chart are given by 

 

LCLk = μΤ(n) − L√V(Q)

CLk = μΤ(n)

UCLk = μΤ(n) + L√V(Q),

 (8) 

with L >0 being the control chart multiplier. For simplicity purposes, the asymptotic control limits 

are used for the construction of the S2-QEWMA control chart, by computing the variance of the 

statistic Qk given in Eq. (6). The S2-QEWMA chart is designed by plotting the statistic Qk versus 

the subgroup number k. The process is considered to be OOC when Qk ≤ LCLk or Qk ≥ UCLk; 

otherwise, it is said to be IC. 

3. Performance evaluation of the 𝐒𝟐 -QEWMA chart 

In the current section, we examine the efficiency of the S2-QEWMA  chart. Traditionally, the  

statistical performance  of a control  chart  is measured  using the  ARL, the SDRL and the percentile 

points.  Particularly, the ARL is described as the average number of statistics that  must  be plotted  

on a chart  until  an OOC  signal is raised. When the process variability is IC (τ = σ1 σ0⁄ = 1), a 

large value of IC ARL (ARL0) is  suggested  to avoid false alarms.   Nevertheless, when the  process 

is OOC,  i.e.  τ ≠ 1, a small OOC ARL (ARL1) value is preferable so as to detect the shift in the 

process variability quickly.  Here, both the ARL and SDRL measures are used to examine the 

performance of the S2-QEWMA  control chart. 

 The run-length  distribution of the proposed S2-QEWMA  chart  is evaluated  via a Monte-Carlo 

simulation algorithm using the R statistical software.  The algorithm is run 10000 iterations,  so as 

to calculate  the mean and the standard deviation  of the 10000 run-lengths.  We assume that  the 
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process for the IC state  is normally distributed with µ0 = 0 and σ1 = τσ0 (τ = 1.00), whereas the 

OOC process follows the Normal distribution with  mean  µ1 = 0 and  standard deviation  σ1 =

τσ0 (τ ≠ 1.00).   Furthermore, the statistical design of the  S2-QEWMA  chart  requires  the  finding 

of the  (λ, L)  design parameter combinations,  in order  to  achieve a pre-fixed ARL0  value  for a 

specified value of the sample size n.  Consequently, the L values are obtained via Monte-Carlo 

simulations  considering the asymptotic  control  limits of the S2-QEWMA  chart  given in Eq.  (8), 

by calculating  the asymptotic  variance of statistic Qk given in Eq.  (6), for various λ and n values 

when ARL0 ≈200, 370 and 500. 

Table 2 provides the  (λ, L)  design parameter combinations  of the  S2-QEWMA control chart  

with λ ∈ {0.10, 0.15, . . . , 0.95, 1.00}, when n ∈ {3, 5, 7, 9} and ARL0 ≈200, 370 and  500. Tables  A1 

and  A2 in  the  Supplementary Material  present  the ARL and the SDRL (in the parenthesis) results 

of the S2-QEWMA control chart with λ ∈ {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50} using 

asymptotic  control limits, when n ∈ {5, 9} as well as ARL0 ≈ 200 and 370. It is to be noted that, the 

dispersion shifts between σ0 and σ1 = τσ0, where τ =
σ1

σ0
∈ {0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 1.00, 

1.05, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00}.  In case of τ < 1.00, we refer to 

downward shifts, whereas τ > 1.00 is related  with the upward  shifts.  The smallest ARL1 values 

are indicated with bold print for each shift τ in Tables A1 and A2 in the Supplementary Material  as 

well. 

Table 2. (λ, L) parameter combinations for the S2-QEWMA control chart when n ∈  {3, 5, 7, 9} and, 𝐴𝑅𝐿0 ≈ 200, 370 and 

500 

 

λ 

ARL0 ≈ 200 

 

370 500 

n =3 5 7 9 3 5 7 9 3 5 7 9 

0.10 2.1354 1.6908 1.6140 1.5830 2.1364 1.9165 1.9053 1.8839 2.1551 2.0432 2.0355 2.0250 

0.15 1.8600 1.8110 1.7975 1.7840 2.1069 2.0890 2.0832 2.0800 2.2334 2.2225 2.2185 2.2165 

0.20 1.9630 1.9550 1.9445 1.9410 2.2275 2.2255 2.2272 2.2256 2.3555 2.3542 2.3520 2.3520 

0.25 2.0682 2.0712 2.0655 2.0600 2.3330 2.3325 2.3340 2.3300 2.4531 2.4538 2.4535 2.4520 

0.30 2.1556 2.1610 2.1608 2.1590 2.4160 2.4186 2.4180 2.4148 2.5300 2.5360 2.5365 2.5346 

0.35 2.2350 2.2110 2.2450 2.2450 2.4860 2.4930 2.4912 2.4930 2.6000 2.6040 2.6040 2.6080 

0.40 2.3025 2.3135 2.3200 2.3150 2.5460 2.5565 2.5540 2.5605 2.6600 2.6670 2.6625 2.6723 

0.50 2.4222 2.4310 2.4376 2.4410 2.6520 2.6550 2.6640 2.6685 2.7640 2.7580 2.7690 2.7782 

0.60 2.5170 2.5300 2.5350 2.5500 2.7475 2.7400 2.7515 2.7620 2.8565 2.8390 2.8486 2.8605 

0.70 2.6084 2.6089 2.6198 2.6340 2.8500 2.8062 2.8209 2.8350 2.9640 2.8975 2.9179 2.9270 

0.75 2.6560 2.6318 2.6500 2.6650 2.9010 2.8250 2.8445 2.8550 3.0125 2.9190 2.9346 2.9470 

0.80 2.7050 2.6445 2.6700 2.6850 2.9455 2.8342 2.8530 2.8710 3.0560 2.9240 2.9405 2.9568 

0.90 2.7700 2.6330 2.6489 2.6740 2.9820 2.8275 2.8205 2.8420 3.0785 2.9200 2.9033 2.9200 

0.95 2.7825 2.6345 2.6170 2.6530 2.9790 2.8275 2.7905 2.8120 3.0695 2.9166 2.8736 2.8905 

1.00 2.7910 2.6384 2.5990 2.6370 2.9810 2.8280 2.7855 2.7940 3.0692 2.9135 2.8750 2.8725 

 

The results in Tables A1 and A2 in the Supplementary Material  reveal that: 

• Small λ values  are  preferable  for detecting  moderate  downward  to  small upward shifts (0.80 ≤
τ ≤ 1.20) in the variability. 

•  Large values of λ are recommended  for detecting  large downward  (τ < 0.80) and moderate  to 

large upward  (τ > 1.20) shifts in the variability. 

• As the ARL0 decreases, both  the ARL1 and SDRL1 decrease for all the examined τ and n values. 

• Generally,  the  efficiency of the  S2-QEWMA  chart  improves,  as the  sample size n increases.  

However, the opposite happens  for the ARL measure at i) λ = 0.10 and τ ≥ 1.20 when ARL0 ≈
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200,  ii) λ =  0.10 and  τ ≥ 1.30 when ARL0 ≈370,  iii) λ = 0.15 and τ ≥ 1.70 when ARL0 ≈
200, as well as iv) λ = 0.15 and τ = 2.00 when ARL0 ≈370. 

•  The SDRL0 decreases as the n value increments  for the majority  of the examined scenarios, 

except for the cases that λ = 0.25, 0.30 and 0.40 when ARL0 ≈ 200. 

• Both  ARL1 and SDRL1  decrease,  as the  τ  value  increases  or decreases  for the examined λ cases. 

• The  S2-QEWMA  chart  is more sensitive  in detecting  the  upward  shifts  than  the downward  

shifts  in the  variability.  For  instance,  when ARL0 ≈370  and  n = 5, the ARL1 values of the S2-

QEWMA  control chart  with λ = 0.10, 0.20 and 0.30, at τ = 0.90, are 78.08, 82.17 and 101.20, 

respectively, whereas the corresponding ARL1 values at τ = 1.10 are 48.85, 63.86, and 71.19. 

Nevertheless,  the results  show that the  proposed  chart  with  λ = 0.50 is less efficient in 

detecting  large upward  shifts than  large downward shifts in the variability. 

4. Performance comparisons 

Here, we compare the performance of the S2-QEWMA chart with that of some recently developed 

memory-type control charts in the literature, such as the S2-GWMA, S2-EWMA, S2-CUSUM, CS-

EWMA, S2-HEWMA, S2-TEWMA and S2-DGWMA charts. We use run length measures, like the 

ARL and the SDRL. For a pre-fixed ARL0 value, the control chart with the smaller ARL1 value can 

detect the shift faster compared with the other competing control charts. Consequently, in order to 

have fair comparisons, we take into consideration these control charts assuming two-sided 

asymptotic control limits, ARL0 ≈370 as well as n = 5. Tables A3 to A8 in the Supplementary 

Material present the ARL and SDRL (in the parenthesis) results of these charts, for the same τ values 

(0.50 ≤ τ ≤ 2.00) as in Section 3. Note that the design parameters of the S2-GWMA, S2-EWMA, 

S2-CUSUM, CS-EWMA, S2-HEWMA, S2-TEWMA and S2-DGWMA charts are obtained through 

Monte-Carlo simulations such that ARL0 ≈370 and n = 5. The considered control charts are briefly 

described, and compared individually with the proposed S2-QEWMA chart. 

• 𝐒𝟐-QEWMA chart versus 𝐒𝟐-GWMA chart 

The plotting statistic of the S2-GWMA chart is given by 

 Gk = ∑ (q(j−1)
α
− qj

α
)Τk−j+1

k
j=1 + qk

α
G0, for k = 1,2,… (9) 

with the statistic Τk being given by the Eq. (1), q ∈ [0, 1) being the design parameter, α > 0 being 

the adjustment parameter and G0 = Q0 being the starting value. The asymptotic control limits of the 

S2-GWMA chart are given by 

 

LCL = μΤ(n) − LσΤ(n)√D

CL = μΤ(n)

UCL = μΤ(n) + LσΤ(n)√D

 (10) 

where L(> 0) is the control chart multiplier, D = lim
𝑘→∞

Dk and Dk = ∑ (q(j−1)
α
− qj

α
)
2k

j=1 , k =

1, 2, . .. . It is also worth mentioning that, the S2-GWMA chart reduces to the S2-EWMA chart when 

q =  1 − λ and α = 1.00, where λ ∈ (0.00, 1.00] is the smoothing parameter of the latter chart. In 

order to construct the S2-GWMA chart, we plot, the statistic Gk versus the sample number k. The 

process is declared as OOC, when Gk ≤ LCL or Gk ≥ UCL; otherwise the process is considered to be 

IC. Table A3 in the Supplementary Material presents the ARL and SDRL (in the parenthesis) values 

of the S2-GWMA chart for various (q, α, L) combinations when ARL0 ≈370 and n = 5.  

According to Tables A2 and A3 in the Supplementary Material, the proposed chart is more 

efficient than the S2-GWMA chart in detecting small downward to small upward shifts. For instance, 
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we observe that the S2-QEWMA (𝜆 = 0.15) chart is better than the S2-GWMA (𝑞 = 0.85, 𝛼 ∈

 {1.00, 1.20}) chart at small shifts (0.80 ≤ 𝜏 ≤ 1.20) in the variability. The S2-QEWMA (𝜆 = 0.20) 

chart has lower ARL1 and SDRL1 values than the S2-GWMA (𝑞 = 0.80, 𝛼 = 1.00) (i.e. S2-EWMA 

(𝜆 = 0.20)) chart at 0.80 ≤  𝜏 ≤ 1.10, except at 𝜏 = 1.05. Additionally, the S2-QEWMA (𝜆 = 0.50) 

chart is more efficient than the S2-GWMA (𝑞 = 0.50, 𝛼 = 1.20) chart in detecting shifts of size 

0.50 ≤ 𝜏 < 1.00 and 1.10 ≤ 𝜏 ≤ 1.30. Particularly, the performance of the S2-QEWMA chart 

improves as 𝜆(𝑞) increases (decreases) in detecting downward shifts compared with the S2-GWMA 

chart. For example, the S2-QEWMA (𝜆 = 0.10) chart is more sensitive than the S2-GWMA (𝑞 =

0.90, 𝛼 = 0.80) chart at 0.90 ≤ 𝜏 ≤ 1.00, the S2-GWMA (𝑞 = 0.75, 𝛼 = 1.00) (i.e. S2-EWMA (𝜆 =

0.25)) chart is less effective than the S2-QEWMA (𝜆 = 0.25) chart at 0.70 ≤ 𝜏 ≤ 1.00 and 𝜏 = 1.10, 

the S2-QEWMA (𝜆 = 0.30) chart has lower ARL1 and SDRL1 results than the S2-GWMA (𝑞 =

0.70, 𝛼 = 1.20) chart at 0.60 ≤ 𝜏 ≤ 1.00 and 1.10 ≤ 𝜏 ≤ 1.20, and the S2-QEWMA (𝜆 ∈

{0.40, 0.50}) chart is better compared with the S2-GWMA (𝑞 ∈ {0.60, 0.50}, 𝛼 ∈ {0.80, 1.00}) chart 

at 0.50 ≤ 𝜏 < 1.00. It should also be pointed out that, the S2-QEWMA chart shows lower SDRL1 

values than the competing chart for most of the considered scenarios and τ values. Nevertheless, 

there are cases that the S2-GWMA chart has better ARL performance than the proposed chart for 

upward shifts. For example, the S2-GWMA (𝑞 = 0.75, 𝛼 = 1.00) (i.e. S2-EWMA (λ =0.25)) chart 

has lower ARL1 values than the S2-QEWMA (𝜆 = 0.25) chart at 𝜏 = 1.05 and 𝜏 ≥ 1.20. 

Furthermore, the S2-GWMA (𝑞 = 0.60, 𝛼 = 0.80) and S2-GWMA (𝑞 = 0.60, 𝛼 = 1.20) charts have 

better ARL1 values than the S2-QEWMA (𝜆 = 0.40) chart at 𝜏 > 1.00 and 𝜏 > 1.20, respectively. 

• 𝐒𝟐-QEWMA chart versus 𝐒𝟐-CUSUM chart 

The plotting statistics of the S2-CUSUM chart are given by 

 
Ck
− = max[0, Ck−1

− + μΤ(n) − Tk − K]

Ck
+ = max[0, Ck−1

+ + Tk − μΤ(n) − K]
, for k = 1,2, … (11) 

where the statistic Tk is given by Eq. (1), K(≥  0) is the reference value and C0
− = C0

+ = 0 are the 

starting values. The Ck
− and Ck

+ statistics are plotted against the decision interval H. The process is 

declared as OOC, if either of the two statistics is plotted above H(≥ 0). Table A4 in the 

Supplementary Material presents the ARL and SDRL (in the parenthesis) results of the S2-CUSUM 

chart for various (K,H) combinations when ARL0 ≈370 and n = 5. 

Tables A2 and A4 in the Supplementary Material indicate that the S2-QEWMA chart is more 

efficient than the S2-CUSUM chart in identifying large downward to small upward shifts in the 

variability. For example, the S2-QEWMA chart with λ ∈ {0.15, 0.20, 0.25} is more effective than the 

S2-CUSUM chart with K = 0.50 at 0.80 ≤ τ ≤ 1.20. Furthermore, the S2-QEWMA chart with λ =

0.25 is better than the S2-CUSUM chart with K = 1.00 at 0.60 ≤ τ ≤ 1.20, and the S2-QEWMA 

chart with λ = 0.40 is more efficient than the S2-CUSUM chart with K = 1.25 at 0.50 ≤ τ < 1.00 

as well as 1.10 ≤ τ ≤ 1.30. Nevertheless, the opposite is observed for the ARL measure in case of 

moderate to large upward shifts. For instance, the S2-CUSUM chart with K =  0.50 has lower ARL1 

values than the S2-QEWMA chart with λ ∈ {0.15, 0.20, 0.25} at τ > 1.20. Finally, the SDRL 

performance of the S2-QEWMA chart is better than that of the S2-CUSUM chart for most of the 

examined cases. 

• 𝐒𝟐-QEWMA chart versus CS-EWMA chart 

The charting statistics of the CS-EWMA chart are defined as 
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Mk
− = max[0,Mk−1

− + μΤ(n) − Zk − K′]

Mk
+ = max[0,Mk−1

+ + Zk − μΤ(n) − K′]
, for k = 1,2,… (12) 

where Zk = λTk + (1 − λ)Zk−1 for k = 1, 2, . .. , λ ∈ (0, 1] is the smoothing parameter, M0
− = M0

+ =

0 are the starting values, and K′ = KCS√
λ

2−λ
 is the reference value with KCS ≥ 0. The statistics Mk

− 

and Mk
+ are plotted against the decision interval Η′ = HCS√

λ

2−λ
, while the process raises an OOC 

signal if either Mk
− or Mk

+ is plotted over the Η′. The ARL and the SDRL (in the parenthesis) values 

for the CS-EWMA chart are displayed in Table A5 in the Supplementary Material for various 

(λ, KCS, HCS) combinations when ARL0 ≈370 and n = 5. 

Tables A2 and A5 in the Supplementary Material reveal that the proposed chart has lower ARL1 

values compared with the CS-EWMA chart in detecting small shifts. For instance, the S2-QEWMA 

(λ ∈  {0.15, 0.20, 0.25}) chart is more sensitive than the CS-EWMA (λ ∈  {0.15, 0.20, 0.25}, KCS  =

 1.00) chart at 0.90 ≤ τ ≤ 1.10, the S2-QEWMA (λ = 0.30) chart is better than the CS-EWMA (λ =

 0.30, KCS = 1.00) chart at 0.90 ≤  τ < 1.00 and τ = 1.10, and the S2-QEWMA (λ ∈

 {0.35, 0.40, 0.50}) is more efficient than the CS-EWMA (λ ∈  {0.35, 0.40, 0.50}, KCS = 1.00) chart 

at 0.90 ≤ τ < 1.00, while the opposite is observed for the remaining τ values. It should be pointed 

out that, the S2-QEWMA (λ ∈ {0.15, 0.20, 0.25}) chart has better SDRL performance compared with 

that of the CS-EWMA (λ ∈ {0.15, 0.20, 0.25}, KCS = 1.00) chart for most of the considered τ values. 

As λ increases, the S2-QEWMA chart has lower SDRL1 values than the CS-EWMA chart for 

downward, as well as moderate to large upward shifts in the variability. For example, the S2-

QEWMA (λ = 0.35) chart has lower SDRL1 results than the CS-EWMA (λ =  0.35, KCS  =  1.00) 

chart at 0.50 ≤ τ < 1.00 and 1.30 ≤ τ ≤ 2.00. 

• 𝐒𝟐-QEWMA chart versus 𝐒𝟐-HEWMA chart 

The plotting statistic Yk of the S2-HEWMA chart is given through the following system of equations 

 
Yk = λ1Ζk + (1 − λ1)Yk−1
Zk = λ2Tk + (1 − λ2)Zk−1

}  for k = 1,2, … (13) 

where Tk is given by Eq. (1), λ1, λ2 ∈ (0, 1] are the smoothing parameters, and Y0 = Z0 = Q0 are the 

starting values. Given λ1 ≠ λ2, the asymptotic control limits of the S2-HEWMA chart are given by 

 

LCL = μΤ(n) − LσΤ(n) (
λ1λ2

λ1−λ2
 )√∑

(1−λi)
2

1−(1−λi)
2

2
i=1 −

2(1−λ1)(1−λ2)

1−(1−λ1)(1−λ2)

CL = μΤ(n)

UCL = μΤ(n) + LσΤ(n) (
λ1λ2

λ1−λ2
 ) √∑

(1−λi)
2

1−(1−λi)
2

2
i=1 −

2(1−λ1)(1−λ2)

1−(1−λ1)(1−λ2)

 (14) 

where L(> 0) is the control chart multiplier. When λ1 = λ2, the asymptotic control limits of the S2-

HEWMA chart are given by 

 

LCL = μΤ(n) − LσΤ(n)√
λ(2−2λ+λ2)

(2−λ)3

CL = μΤ(n)

UCL = μΤ(n) + LσΤ(n)√
λ(2−2λ+λ2)

(2−λ)3

 (15) 

The S2-HEWMA control chart is designed by plotting the statistic Yk versus the subgroup number 

k. The process is considered to be IC, if LCL < Yk < UCL. Table A6 in the Supplementary Material 
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provides the ARL and the SDRL (in the parenthesis) values of the S2-HEWMA chart for various 

(λ1, λ2, L) combinations when ARL0 ≈370 and n = 5. 

The comparison of the results between Tables A2 and A6 in the Supplementary Material indicates 

that the proposed chart is better than the S2-HEWMA chart in detecting small deviations in the 

process dispersion. Particularly, as the λ value increases, the ARL performance of the S2-QEWMA 

chart improves in detecting moderate to large downward shifts compared with the competing chart. 

Additionally, the proposed chart has better SDRL performance than that of the S2-HEWMA chart 

for most of the examined cases and τ values. For example, the S2-QEWMA (λ = 0.15) chart has 

lower ARL1 values at 0.90 ≤ τ ≤ 1.10, as well as lower SDRL1 values at 0.50 ≤ τ ≤ 2.00, in 

comparison with the S2-HEWMA (λ1 = 0.15, λ2 ∈ {0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50}) chart. 

Furthermore, comparing the S2-QEWMA (λ = 0.35) and S2 −HEWMA (λ1 = 0.35, λ2 ∈

{0.35, 0.40, 0.50}) charts, we observe that the first chart has better ARL performance at 0.70 ≤ τ <

1.00 and τ = 1.10, as well as better SDRL performance at 0.50 ≤ τ < 1.00 and 1.10 ≤ τ ≤ 2.00 

than the latter chart. 

• 𝐒𝟐-QEWMA chart versus 𝐒𝟐-TEWMA chart 

The plotting statistic Wk of the S2-TEWMA chart is given through the following system of equations 

 

Zk = λTk + (1 − λ)Ζk−1
Yk = λZk + (1 − λ)Yk−1
Wk = λYk + (1 − λ)Wk−1

}  for  k = 1,2,… (16) 

where Tk is given by Eq. (1), λ ∈ (0, 1] is the smoothing constant, and W0 = Y0 = Z0 = Q0 are the 

starting values. The asymptotic control limits of the S2-TEWMA chart are given by 
 

 

LCL = μΤ(n) − LσΤ(n)√[
6(1−λ)6λ

(2−λ)5
+
12(1−λ)4λ2

(2−λ)4
+
7(1−λ)2λ3

(2−λ)3
+

λ4

(2−λ)2
]

CL = μΤ(n)

UCL = μΤ(n) + LσΤ(n)√[
6(1−λ)6λ

(2−λ)5
+
12(1−λ)4λ2

(2−λ)4
+
7(1−λ)2λ3

(2−λ)3
+

λ4

(2−λ)2
]

 (17) 

where L(>  0) is the control chart multiplier. The S2-TEWMA chart is constructed by plotting the 

statistic Wk versus the sample number k and the process raises an OOC signal, when Wk ≤ LCL or 

Wk ≥ UCL. The ARL and SDRL (in the parenthesis) values of the S2-TEWMA chart are presented 

in Table A7 in the Supplementary Material for various (λ, L) combinations when ARL0 ≈370 and 

n = 5. 

Tables A2 and A7 in the Supplementary Material reveal that the S2-QEWMA chart is more 

sensitive than the S2-TEWMA chart in identifying small upward and downward shifts in the 

variability. Additionally, as the parameter λ increments, the proposed chart becomes more efficient 

than the S2-TEWMA chart in detecting moderate to large downward shifts. However, we observe 

that, the S2-QEWMA chart with λ ∈ {0.40, 0.50} is less efficient than the competing chart for small 

upward shifts. In case of the moderate to large upward shifts, the S2-TEWMA chart shows lower 

ARL1 values than the proposed chart. It must be noted that, the S2-QEWMA chart shows better SDRL 

performance for most of the examined λ and τ values, except e.g when i) λ = 0.10 at 0.50 ≤ τ ≤

0.60, ii) λ = 0.15 at 1.90 ≤ τ ≤ 2.00, iii) λ = 0.40 at τ = 1.05, and iv) λ = 0.50 at 1.05 ≤ τ ≤ 1.10. 

For example, the S2-QEWMA (λ = 0.20) chart has lower ARL1 results at 0.90 ≤ τ ≤ 1.10, while it 

has lower SDRL1 results at 0.50 ≤ τ ≤ 2.00 compared with the S2-TEWMA (λ = 0.20) chart. 
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Furthermore, the S2-QEWMA (λ = 0.40) chart has better ARL performance at 0.70 ≤ τ ≤ 0.95 and 

τ = 1.10, as well as better SDRL performance at 0.50 ≤ τ ≤ 0.95 and 1.05 ≤ τ ≤ 2.00, compared 

with the S2-TEWMA (λ = 0.40) chart. 

• 𝐒𝟐-QEWMA chart versus 𝐒𝟐-DGWMA chart 

The plotting statistic of the S2-DGWMA chart is defined through the following system of equations 

 {
Gk = ∑ (q(j−1)

α
− qj

α
)Τk−j+1

k
j=1 + qk

α
G0

DGk = ∑ (q(j−1)
α
− qj

α
)Gk−j+1

k
j=1 + qk

α
DG0

, for k = 1,2,… (18) 

where the statistic Tk is given by Eq. (1), q ∈ [0, 1) is the design parameter, α > 0 is the adjustment 

parameter and DG0 = G0 = Q0 are the starting values. The asymptotic control limits of the S2-

DGWMA chart are given by 

 

LCLk = μΤ(n) − LσΤ(n)√F

CLk = μΤ(n)

UCLk = μΤ(n) + LσΤ(n)√F

 (19) 

where F = lim
k→∞

Fk and Fk = ∑ (∑ (q(k−u)
α
− q(k−u+1)

α
)(q(u−j)

α
− q(u−j+1)

α
)k

u=j )
2
.k

j=1  The S2-

DGWMA chart is designed by plotting the statistic DGk versus the sample number k. The process is 

declared as IC, when LCL < DGk < UCL; otherwise, it is considered to be OOC. It is important to 

note that, the S2-DGWMA chart reduces to the S2-HEWMA chart when q = 1 − λ, α = 1 and λ =

 λ1 = λ2. Table A8 in the Supplementary Material presents the ARL and SDRL (in the parenthesis) 

values of the S2-DGWMA chart for various (q, α, L) combinations when ARL0 ≈370 and n = 5. It is 

to be noted that the ARL and SDRL results of the S2-DGWMA (q = 1 − λ, α = 1) chart are 

presented in Table A6 for λ =  λ1 = λ2. 

The comparison of the results between Tables A2 and A8 in the Supplementary Material shows 

that the S2-QEWMA chart is better than the S2-DGWMA chart in detecting small shifts in the 

process dispersion. Furthermore, as the λ value increments, the ARL performance of the S2-

QEWMA chart is better in detecting moderate to large downward shifts in comparison with the 

competing chart. Additionally, the newly developed chart has better SDRL performance than that of 

the S2-DGWMA chart for most of the examined scenarios and τ values. For instance, the S2-

QEWMA (λ = 0.25) chart has lower ARL1 values at 0.80 ≤ τ ≤ 1.20 in comparison with the S2-

DGWMA (q = 0.75, α = 1.20) chart. Furthermore, the S2-QEWMA (λ = 0.30) chart has better 

SDRL1 results at τ ≤ 1.00 and τ ≥ 1.40 in comparison with the S2-DGWMA (q =  0.70, α =  0.80) 

chart. 

5. An Illustrative example 

In the current example, a simulated dataset is used in order to illustrate the application of the S2-

QEWMA control chart. A dataset with 30 samples of size n = 5 is generated, in which the Xkj, k =

1, 2, . . . , 30, and j = 1, 2, . . . , 5, are mutually independent and follow the N(µ0, σ1 = τσ0). The first 

10 samples are generated from N(µ0 = 15, σ0 = 1.50) (τ = 1.00). However, a shift of σ1 = 1.10σ0 

(τ =1.10) is added in the standard deviation of the remaining 20 samples. The simulated data, are 

provided in Table 3. 
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Table 3. Data and Calculation Details 

Sample, 

k 
Simulated  Data Tk S2-EWMA S2-CUSUM CS-EWMA S2-HEWMA S2-TEWMA S2-GWMA S2-QEWMA 

1 18.418 21.277 20.400 17.783 21.501 0.574 0.284 0.000 0.067 0.000 0.000 0.226 0.214 0.284 0.212 

2 21.667 21.036 18.114 22.398 20.986 0.461 0.319 0.000 0.020 0.000 0.000 0.244 0.220 0.305 0.213 

3 21.877 19.301 20.232 19.997 18.280 -0.142 0.227 0.000 0.000 0.000 0.000 0.241 0.224 0.205 0.215 

4 20.605 18.455 20.073 19.103 20.344 -0.988 -0.016 0.496 0.000 0.000 0.000 0.189 0.217 -0.021 0.216 

5 19.728 18.197 23.577 19.324 20.847 1.229 0.233 0.000 0.722 0.000 0.000 0.198 0.213 0.277 0.215 

6 20.932 19.591 21.396 21.063 17.676 0.281 0.243 0.000 0.495 0.000 0.000 0.207 0.212 0.245 0.215 

7 19.080 21.491 17.479 20.389 23.113 1.439 0.482 0.000 1.426 0.000 0.141 0.262 0.222 0.477 0.216 

8 20.458 19.154 19.134 18.480 21.690 -0.219 0.342 0.000 0.700 0.000 0.142 0.278 0.233 0.290 0.220 

9 22.231 20.185 19.111 18.760 17.934 0.516 0.376 0.000 0.708 0.000 0.177 0.298 0.246 0.346 0.225 

10 18.072 21.237 21.660 21.351 19.035 0.430 0.387 0.000 0.631 0.000 0.224 0.316 0.260 0.354 0.232 

11 17.495 19.264 21.702 21.226 19.874 0.547 0.419 0.000 0.670 0.000 0.302 0.336 0.275 0.386 0.241 

12 22.522 21.382 19.428 20.096 22.055 -0.178 0.300 0.000 0.000 0.000 0.261 0.329 0.286 0.263 0.250 

13 20.701 17.096 17.614 20.543 20.869 0.874 0.415 0.000 0.366 0.000 0.335 0.346 0.298 0.402 0.259 

14 20.196 18.640 18.591 21.173 18.185 -0.245 0.283 0.000 0.000 0.000 0.277 0.333 0.305 0.253 0.268 

15 19.022 19.303 17.344 21.736 22.150 1.160 0.458 0.000 0.652 0.000 0.394 0.358 0.316 0.453 0.278 

16 19.450 23.238 20.160 18.333 20.516 0.828 0.532 0.000 0.972 0.000 0.585 0.393 0.331 0.498 0.289 

17 22.974 20.602 21.520 17.284 20.762 1.310 0.687 0.000 1.774 0.000 0.932 0.452 0.355 0.638 0.302 

18 20.174 20.783 22.052 18.122 20.301 0.052 0.560 0.000 1.319 0.000 1.151 0.474 0.379 0.481 0.317 

19 17.094 18.703 18.688 20.574 18.761 -0.326 0.383 0.000 0.485 0.000 1.193 0.455 0.394 0.327 0.333 

20 21.483 21.602 17.987 17.478 22.418 1.632 0.633 0.000 1.609 0.000 1.485 0.491 0.414 0.617 0.349 

21 20.846 21.254 20.973 21.588 23.930 -0.252 0.456 0.000 0.849 0.000 1.600 0.484 0.428 0.401 0.365 

22 19.288 23.245 20.663 16.931 18.980 1.715 0.708 0.000 2.057 0.000 1.967 0.529 0.448 0.685 0.381 

23 18.717 22.013 19.200 20.510 21.758 0.165 0.599 0.000 1.715 0.000 2.225 0.543 0.467 0.534 0.398 

24 18.591 20.650 19.393 20.554 21.603 -0.442 0.391 0.000 0.765 0.000 2.275 0.512 0.476 0.345 0.414 

25 20.227 17.806 21.449 21.948 19.326 0.534 0.419 0.000 0.791 0.000 2.354 0.494 0.480 0.418 0.427 

26 20.363 21.230 18.841 17.383 17.204 0.752 0.486 0.000 1.036 0.000 2.499 0.492 0.482 0.487 0.438 

27 20.614 19.778 21.529 18.868 21.625 -0.444 0.300 0.000 0.085 0.000 2.459 0.454 0.476 0.290 0.446 

28 19.630 20.128 17.273 21.570 20.196 0.340 0.308 0.000 0.000 0.000 2.426 0.425 0.466 0.333 0.450 

29 19.868 18.380 19.463 19.516 21.847 -0.259 0.195 0.000 0.000 0.000 2.280 0.379 0.449 0.222 0.450 

30 21.086 20.464 21.711 21.643 19.794 -1.166 -0.078 0.674 0.000 0.000 1.861 0.287 0.416 -0.029 0.443 

Assuming ARL0 ≈ 370, we construct the proposed S2-QEWMA (λ = 0.20, L = 2.2255) chart, 

along with the S2-EWMA (λ = 0.20, L = 2.8004) (i.e. S2-GWMA (q = 0.80, α = 1.00, L =

2.8004)), S2-CUSUM (K = 0.50,H =  4.412), CS-EWMA (λ = 0.20, KCS  = 1.00,HCS  = 8.74), 

S2-HEWMA (λ1 = 0.20, λ2 = 0.20, L = 2.517) (i.e. S2-DGWMA (q = 0.80, α = 1.00, L =

2.517)), S2-TEWMA (λ = 0.20, L = 2.332) and S2-GWMA (q = 0.80, α = 0.80, L = 2.8099) 

charts with asymptotic control limits. The calculation details of the plotting statistics of all the 

considered charts are displayed in the aforementioned Table as well. Figures 1 to 7 present the S2-

EWMA, S2-CUSUM, CS-EWMA, S2-HEWMA, S2-TEWMA, S2-GWMA and S2-QEWMA charts, 

respectively. We observe that the samples 24 to 30 raise an OOC signal in the S2-QEWMA chart, 

the samples 24 to 27 raise an OOC signal in the S2-TEWMA chart, while the remaining charts fail 

to detect the change in the process standard deviation. 
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Figure 1. S2-EWMA chart with (λ, L)  =  (0.20, 2.8004),  

ARL0 ≈370 and n = 5 

 

Figure 2. S2-CUSUM chart with (K, H)  =  (0.50, 4.412),  

ARL0 ≈370 and n = 5 

 

 
Figure 3. CS-EWMA chart with (λ, KCS, HCS ) =

(0.20, 1.00, 8.74),  ARL0 ≈370 and n = 5 

 
Figure 4. S2-HEWMA chart with  (λ1, λ2, L)  = 

 (0.20, 0.20, 2.517), ARL0 ≈3 7 0  a n d  n = 5 
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Figure 5. S2-TEWMA chart with (𝜆, 𝐿)  =

 (0.20, 2.332), ARL0 ≈370 and n = 5 

 
Figure 6. S2-GWMA chart with (q, α, L)  =

 (0.80, 0.80, 2.8099), ARL0 ≈370 and n = 5 

 

 

Figure 7. S2-QEWMA chart with (𝜆, 𝐿) = (0.20, 2.2255),  ARL0 ≈370 and n = 5  

6. Conclusions 

In this article, we introduce  a novel control chart  called the S2-QEWMA  chart,  which utilizes a 

three-parameter logarithmic  transformation to the sample variance,  serving as an EWMA-type  

chart  for monitoring  the  process dispersion.  We conduct  numerous Monte-Carlo  simulations  to 

determine  the design parameters for the S2-QEWMA chart.   Our  evaluation  study  reveals that  

this  chart  exhibits  increased  sensitivity  as the  sample size grows.  Additionally, we recommend  

using small 𝜆 values for detecting small deviations  in the process variability,  while larger λ values 

are more suitable for identifying  moderate  to large upward  shifts.  Furthermore, we perform a 

comparative  analysis  of the  newly proposed  S2-QEWMA  chart  against  several  established 

memory-type  control  charts  designed  for monitoring  the  process variability,   including the S2-

GWMA,  S2-EWMA,  S2-CUSUM, CS-EWMA, S2-HEWMA,  S2-TEWMA, and S2-DGWMA  
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charts.   The  results  of this  comparison  study  indicate  that  the  S2- QEWMA chart  outperforms  

its competitors,  especially in detecting  small shifts in the process dispersion.  To  illustrate  the  

implementation of our proposed  chart  and  the aforementioned  competing  control  charts,  we 

provide  a practical  example.   In future research, it would be valuable to explore the variable 

sampling interval version of the S2-QEWMA  control chart  or assess the performance of the S2-

QEWMA  chart  under  different smoothing parameters. 
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Appendix 

A. The following Lemma will be helpful in deriving the expectation and the variance of Qk. 
 

Lemma 1 For any k ≥ 1 and 0 ≤ d < 1, we have 

∑ldl−1
k

l=1

= (
1 − dk+1

(1 − d)2
) − (

(k + 1)dk

(1 − d)
), 

∑l(l − 1)dl−2
k

l=1

= −[
k(k + 1)dk−1

1 − d
] − [

2(k + 1)dk

(1 − d)2
] + [

2(1 − dk+1)

(1 − d)3
], 
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∑l(l − 1)(l − 2)dl−3
k

l=1

= −[
k(k2 − 1)dk−2

1 − d
] − 3 [

k(k + 1)dk−1

(1 − d)2
] − 6 [

(k + 1)dk

(1 − d)3
] + 6 [

1 − dk+1

(1 − d)4
], 

∑l(l − 1)(l − 2)(l − 3)dl−4
k

l=1

= −[
k(k2 − 1)(k − 2)dk−3

1 − d
] − 4 [

k(k2 − 1)dk−2

(1 − d)2
] − 12 [

k(k + 1)dk−1

(1 − d)3
] 

−24 [
(k + 1)dk

(1 − d)4
] + 24 [

1 − dk+1

(1 − d)5
], 

∑l(l − 1)(l − 2)(l − 3)(l − 4)dl−5
k

l=1

= −
k(k2 − 1)(k − 2)(k − 3)dk−4

1 − d
−
5k(k2 − 1)(k − 2)dk−3

(1 − d)2
− 

20k(k2 − 1)dk−2

(1 − d)3
−
60k(k + 1)dk−1

(1 − d)4
−
120(k + 1)dk

(1 − d)5
+
120(1 − dk+1)

(1 − d)6
 

∑l(l − 1)(l − 2)(l − 3)(l − 4)(l − 5)dl−6
k

l=1

= −
k(k2 − 1)(k − 2)(k − 3)(k − 4)dk−5

1 − d
−
6k(k2 − 1)(k − 2)(k − 3)dk−4

(1 − d)2

−
30k(k2 − 1)(k − 2)dk−3

(1 − d)3
−
120k(k2 − 1)dk−2

(1 − d)4
−
360k(k + 1)dk−1

(1 − d)5
−
720(k + 1)dk

(1 − d)6

+
720(1 − dk+1)

(1 − d)7
. 

 

B. Derivation of an explicit form of 𝐐𝐤 

 

Eq. (2) can be rewritten as 

 

Zk = λ∑ (1 − λ)k−ik
i=1 Ti + (1 − λ)

kZ0

Yk = λ∑ (1 − λ)k−ik
i=1 Zi + (1 − λ)

kY0

Wk = λ∑ (1 − λ)k−ik
i=1 Yi + (1 − λ)

kW0

Qk = λ∑ (1 − λ)k−ik
i=1 Wi + (1 − λ)

kQ0}
 
 

 
 

k = 1,2,… (20) 

From Eq. (20), we get after algebraic simplification the following 

 

Yk = λ2∑ (1 − λ)k−i(k − i + 1)Ti + (λk + 1)
k
i=1 (1 − λ)kY0

Wk =
λ3

2
∑

(1 − λ)k−i(k − i + 1)(k − i + 2)Ti + (
(1−λ)k

2
) ×

[λk(λk + λ + 2) + 2]W0

k
i=1

Qk =
λ4

6
∑ (1 − λ)k−i(k − i + 1)(k − i + 2)(k − i + 3)Ti
k
i=1 +

(1−λ)k

6
[λk{λ(k + 1)(λk + 2λ + 3) + 6} + 6]Q0 }

 
 
 

 
 
 

 (21) 

C. Derivation of  𝐄(𝐐𝐤) 

From Eq. (21), we get  

E(Qk) =
𝜆4

6
∑(1 − 𝜆)𝑘−𝑖(𝑘 − 𝑖 + 1)(𝑘 − 𝑖 + 2)(𝑘 − 𝑖 + 3)𝐸(𝑇𝑖)

𝑘

𝑖=1

+
(1 − λ)k

6
[λk{λ(k + 1)(λk + 2λ + 3) + 6} + 6]Q0 

Let d =  1 −  λ. Then 

∑(1 − λ)k−i(k − i + 1)(k − i + 2)(k − i + 3)

k

i=1

 

=∑u(u + 1)(u + 2)du−1
k

u=1

=∑u(u − 1)(u − 2)du−1
k

u=1

+ 6∑u(u − 1)du−1
k

u=1

+ 6∑udu−1
k

u=1

= 
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= −
(k + 1)(k + 2)(k + 3)dk

1 − d
−
3(k2 + 5k + 6)dk+1

(1 − d)2
−
6(k + 3)dk+2

(1 − d)3
−

6dk+3

(1 − d)4
+

6

(1 − d)4
. 

Therefore, 

 
𝜆4

6
∑(1 − 𝜆)𝑘−𝑖(𝑘 − 𝑖 + 1)(𝑘 − 𝑖 + 2)(𝑘 − 𝑖 + 3)

𝑘

𝑖=1

= −
𝜆3(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝑑𝑘

6
−
𝜆2(𝑘2 + 5𝑘 + 6)𝑑𝑘+1

2
− 𝜆(𝑘 + 3)𝑑𝑘+2 − 𝑑𝑘+3 + 1 

Again, after simplification, we get 
(1 − λ)k

6
[λk{λ(k + 1)(λk + 2λ + 3) + 6} + 6]

=
𝜆3(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝑑𝑘

6
+
𝜆2(𝑘2 + 5𝑘 + 6)𝑑𝑘+1

2
+ 𝜆(𝑘 + 3)𝑑𝑘+2 + 𝑑𝑘+3. 

From above, it follows that 

 𝐸(𝑄𝑘) = 𝜇𝛵(𝑛). (22) 

D. Derivation of  𝐕𝐚𝐫(𝐐𝐤) 
From Eq. (21), we get 

 

Var(Qk) = [
λ
8

36
∑(k − i + 1)2(k − i + 2)2(k − i + 3)2(1 − λ)2(k−i)
k

i=1

] σΤ
2(n). 

Let d = (1 −  λ)2. Then 

 

∑(k − i + 1)2(k − i + 2)2(k − i + 3)2(1 − λ)2(k−i)
k

i=1

 

=∑u2(u + 1)2(u + 2)2du−1
k

u=1

 

=∑[u(u − 1)(u − 2)(u − 3)(u − 4)(u − 5) + 21u(u − 1)(u − 2)(u − 3)(u − 4)

k

u=1

+ 138u(u − 1)(u − 2)(u − 3) + 330u(u − 1)(u − 2) + 252u(u − 1) + 36u]du−1 

=∑[u(u − 1)(u − 2)(u − 3)(u − 4)(u − 5)]du−1
k

u=1

+ 21∑[u(u − 1)(u − 2)(u − 3)(u − 4)]du−1
k

u=1

 

+138∑[u(u − 1)(u − 2)(u − 3)]du−1
k

u=1

+ 330∑[u(u − 1)(u − 2)]du−1
k

u=1

+ 252∑[u(u − 1)]du−1
k

u=1

+ 36∑udu−1
k

u=1

. 

 

Using Lemma 1 we get, after simplification, 

∑(k − i + 1)2(k − i + 2)2(k − i + 3)2(1 − λ)2(k−i)
k

i=1

|

= −[k(k2 − 1)(k − 2)(k − 3)(k − 4) + 21k(k2 − 1)(k − 2)(k − 3) 

+138k(k2 − 1)(k − 2) + 330k(k2 − 1) + 252k(k + 1) + 36(k + 1)]  
dk 

1 − d
 

−[6k(k2 − 1)(k − 2)(k − 3) + 105k(k2 − 1)(k − 2) + 552k(k2 − 1) + 990k(k + 1) + 504(k + 1)

+ 36]
dk+1

(1 − d)2
 

−[30k(k2 − 1)(k − 2) + 420k(k2 − 1) + 1656k(k + 1) + 1980(k + 1) + 504]
dk+2

(1 − d)3
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−[120k(k2 − 1) + 1260k(k + 1) + 3312(k + 1) + 1980]
dk+3

(1 − d)4

− [360k(k + 1) + 2520(k + 1) + 3312]
dk+4

(1 − d)5
− [720(k + 1) + 2520]

dk+5

(1 − d)6

− 720
dk+6

(1 − d)7
+ [

720d5

(1 − d)7
+
2520d4

(1 − d)6
+
3312d3

(1 − d)5
+
1980d2

(1 − d)4
+

504d

(1 − d)3
+

36

(1 − d)2
] 

 

Therefore 

 Var(Qk) = V(d, k)σT
2(n). (23) 

where 

V(d, k) =
λ8

36
[−[k(k2 − 1)(k − 2)(k − 3)(k − 4) + 21k(k2 − 1)(k − 2)(k − 3) + 138k(k2 − 1)(k − 2) + 

330k(k2 − 1) + 252k(k + 1) + 36(k + 1)]  
dk 

1 − d
− [6k(k2 − 1)(k − 2)(k − 3) + 105k(k2 − 1)(k − 2) 

+552k(k2 − 1) + 990k(k + 1) + 504(k + 1) + 36]
dk+1

(1 − d)2
− [30k(k2 − 1)(k − 2) + 420k(k2 − 1)

+ 1656k(k + 1) + 1980(k + 1) + 504]
dk+2

(1 − d)3
 

−[120k(k2 − 1) + 1260k(k + 1) + 3312(k + 1) + 1980]
dk+3

(1 − d)4
 

−[360k(k + 1) + 2520(k + 1) + 3312]
dk+4

(1 − d)5
− [720(k + 1) + 2520]

dk+5

(1 − d)6
 

−720
dk+6

(1 − d)7
+ [

720d5

(1 − d)7
+
2520d4

(1 − d)6
+
3312d3

(1 − d)5
+
1980d2

(1 − d)4
+

504d

(1 − d)3
+

36

(1 − d)2
]]. 

 

Note that, for large values of k (k →  ∞), the asymptotic variance of the statistic Qk becomes 

 Var(Qk) = V(d,∞)σT
2(n). (24) 

where 

 

V(d, k → ∞) =
λ8

36
[
720d5

(1 − d)7
+
2520d4

(1 − d)6
+
3312d3

(1 − d)5
+
1980d2

(1 − d)4
+

504d

(1 − d)3
+

36

(1 − d)2
]. 


