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Abstract: In recent years the application of Deep Learning is widely used in various fields of 

science, such as in the military, agriculture, health and even in other fields. In the field of health 

many studies use deep learning, especially related to heart disorders. Identification and detection of 

heart defects that are widely used are by using an electrocardiogram (ECG). Research related to ECG 

and the application of deep learning methods is very interesting for researchers, because researchers 

trace that there are still few studies that focus on researching related to it. This article aims to explain 

the trend of ECG research using deep learning approaches in recent years. We reviewed journals 

with the keyword title "ECG Deep Learning" and published from 2016 to October 2023. The articles 

that have been obtained are then classified based on the most frequently discussed topics including: 

data sets, pre-processing, feature extraction, and classification/identification methods. The approach 

used by some researchers is mostly to get the best results from the use of deep learning methods. 

This article will provide further explanation of the most widely used algorithms for ECG research 

with a deep learning approach. Of the deep learning methods used, almost 84% use the Convolutional 

Neural Network method. In this article, critical aspects of ECG research can be carried out in the 

future, namely the use of data in the form of other data from ECG, and the use of deep learning is a 

very big opportunity for researchers in the future. 
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1. Introduction 

In recent decades research on the heart has been rife. Some researchers are competing to present the 

results of their research related to this. There are even media reporting that in data released by WHO 

in 2021, deaths from heart disease reached 17.8 million deaths or one in three deaths in the world 

each year caused by heart disease [1]. To reduce the risk of death as equalized, in this case it is very 

important early that we can analyze and predict heart disease [2]. To obtain information related to 

heart abnormalities, various ways are done, one of which uses an electrocardiogram (ECG). ECG is 

the most common cardiological procedure to monitor the heart's electrical activity noninvasively [3]. 

As stated by [4] currently the method of disease identification is to analyze ECG, which is a medical 
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monitoring technology that records heart activity. ECG signals, as one of the most important vital 

signs, can provide information related to indications of many heart-related diseases [5]. ECG is one 

simple test that can be used and utilized to evaluate the patient's heart rhythm and electrical activity 

[6]. 
 

 
Figure 1. Examples of ECG waves & description of each peak [7] 

 

Analyzing ECG results is usually done by a heart-related expert. Careful analysis of ECG signals 

can provide invaluable knowledge about cardiac activity [8]. So far, ECG readings are still done 

manually. Manual ECG signal analysis is not enough to quickly identify abnormalities in heart 

rhythm [9]. It would even be helpful if ECG diagnosis could be done automatically for clinical use 

[10]. Especially now that the latest technology and methods have a lot of findings related to this. It 

is even associated with the latest methods that can help analyze ECG such as the application of 

artificial intelligence (AI). Artificial intelligence and machine learning are used in a variety of 

healthcare-related applications [11]. In addition to machine learning (which is part of AI) in recent 

years there have also been deep learning methods.  

Deep Learning algorithms will be very helpful in analyzing health, especially the ECG. Even 

lately there have been a lot of ECG studies that use this method. Deep learning is currently one of 

the preferred ways researchers are in healthcare applications, coupled with the emergence of 

powerful parallel computing hardware and big data technologies [12]. Recently deep learning has 

been widely used in processing ECG signals, which has previously been used extensively in image 

processing and other domains with great success [13]. This study tried to review the literature related 

to ECG using a deep learning approach within eight years (2016-October 2023). With this literature 

review, it is hoped that it can obtain a road map related to future researches. 
 

2. Methods 

Several studies related to ECG have been published a lot in the past few decades. Based on searches 

obtained by researchers and also conducted by [14], ECG-related research has previously been 

conducted by [15]. While the use of Deep Learning in identifying heart abnormalities using ECG 

obtained by researchers was first carried out by [16]. Then the following year there was also a study 

by [17]. After that, many researchers conducted ECG research using deep learning.  
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In this study, researchers tried to conduct research in terms of literature studies related to 

electrocardiogram (ECG). Researchers began to search literature studies related to journals that discuss 

ECG and used deep learning methods. The search was conducted on several publication database sites 

published from 2016 to October 2023 with the keyword "ECG Deep Learning", and was limited to the 

field of Computer Science. 

A search of documents related to this study obtained 73 articles that the researchers obtained. Then 

the next stage of 73 articles was selected based on the appropriate criteria, 45 articles were obtained 

(ECG using deep learning methods) (Table 1). 

 

Table 1. Article search 

No. Search Information 

1 
73 articles 

 

collected articles 

2 
45 articles appropriate articles (ECG 

using deep learning methods) 

 

The next step is for researchers to analyze articles based on the classification that has been set at the 

beginning. 
 

3. Results & Discussion 

Previous studies that have been conducted related to the use of ECG based on deep learning methods 

were analyzed. The analysis in this section will be divided into three sub-section stages, namely pre-

processing, feature extraction and classification. As well as systematically focused on 45 journals 

starting from 2016 to October 2023. 

 

3.1 Dataset 

Before analyzing the three stages (Pre-processing, extraction, characteristics, and classification), 

researchers first analyze the source of data collection. From the analysis of data collection based on 

the criteria that have been obtained can be grouped into five data collection sources, namely PhysioNet, 

The China Physiological Signal Challenge (CPSC) 2018, UK Biobank, ASCERTAIN Dataset, and 

there are also independent data collection. 

3.1.1 PhysioNet 

Some researchers who often conduct ECG-related research mostly use datasets from PhysioNet. 

Judging from its website, PhysioNet which is under the auspices of the National Institutes of Health 

(NIH) and established since 1999 is one of the research resources for Physiological Signals (Research 

Resource for Complex Physiologic Signals). Its main objective is to catalyze research and education in 

the biomedical field, by offering free access to physiological and clinical databases. Computing in 

Cardiology conference, as well as annual series of challenges activities that are often carried out by 

PhysioNet. PhysioNet is managed by members of the MIT Laboratory for Computational Physiology. 

Many databases provided by PhysioNet include MIT-BIH, Europe ST-Database, Fantasia Database, 

St-Petersburg, Creighton University database (CUDB), PTB diagnostic ECG database, and others. 
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Figure 2. PhysioNet [18] 

 

3.1.2 The China Physiological Signal Challenge (CPSC) 2018 

The China Physiological Signal Challenge (CPSC) 2018 seeks to contribute a more comprehensive 

database. CPSC 2018 aims to encourage the development of algorithms to identify 

rhythmic/morphological abnormalities from 12-lead ECGs. The data used in CPSC 2018 included one 

normal ECG type and eight abnormal types. CPSC 2018 is China's first physiological signaling 

challenge, aiming to provide a platform for open-access data and algorithms to analyze physiological 

signals, and in doing so promote open-source research patterns for the detection and prediction of 

cardiovascular abnormalities in China. The practical goal is to identify rhythm/morphological 

abnormalities from a 12-lead ECG, lasting a few seconds to tens of seconds [19]. 

 

Figure 3. CPSC 2018 [20] 

 

3.1.3 UK Biobank 

The UK Biobank is a large-scale biomedical database and research resource, containing genetic and 

health information from half a million UK participants. The regularly developed database is 

supplemented with additional data and is globally accessible to researchers who have been approved 
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to conduct important research into the most common and life-threatening diseases for society. It is 

hoped that this can be a major contributor to the progress of modern medicine and medicine, and can 

produce several scientific discoveries that are very useful for improving human health. 

 

Figure 4. UK Biobank [21] 

3.1.4 ASCERTAIN Dataset 

Referring to its website, ASCERTAIN Dataset presents multimodal database for implicit personality 

and affect recognition using commercial physiological sensors. To their knowledge, ASCERTAIN is 

the first database to link a person's personality traits and emotional state through physiological 

responses. ASCERTAIN contains five large personality scales and emotional self-assessments of 58 

users along with Electroencephalogram (EEG), Electrocardiogram (ECG), Galvanic Skin Response 

(GSR) and synchronously recorded facial activity data, recorded using off-the-shelf sensors while 

viewing affective film clips. 

 

Figure 5. Website ASCERTAIN Dataset [22] 

 

3.1.5 DREAMER 

DREAMER database as explained by [23], is a multimodal database consisting of 

electroencephalogram (EEG) and electrocardiogram (ECG) signals recorded during elicitation through 
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audio-visual stimuli. Signals from 23 participants were recorded simultaneously with participants' self-

assessments of their affective states. The outline of his research is based on EEG and ECG-based 

features, which were established through classification experiments using the SVM method. The 

results of this study show quite good prospects by using devices at a low cost. The proposed database 

will be publicly available. Researchers who have used the DREAMER database are [24]. 

 

3.1.6 Independent 

The point of independent purpose here is that they are primarily researchers in that the collection of 

data for their research is done independently Table 2 shows some studies that took the data 

independently. 

Table 2. Independent data retrieval 

Year Author Collect Data 

2022 [25] The ECG is 12-lead 10 seconds long 

2023 [26] ECG data were obtained from hospital A and randomly separated into training sets (70%), 

development sets (15%) for hyper parameter tuning, and finally for test sets (15%). All ECG data 

obtained from hospital B were used for the test set. 

2023 [27] The 12-lead ECG database data for arrhythmia research was obtained from Chapman University 

and Shaoxing People's Hospital 

2023 [28] The ECGs collected came from patients with at least one echocardiogram recorded at 3 hospitals 

from 2 continents (Keio University Hospital, Brigham and Women's Hospital, and Dokkyo Medical 

University Saitama Center). 

 

3.2 Pre-processing 

The first stage that is often done in pattern recognition research is the Pre-processing stage. In this 

literature review, the use of deep learning using ECG case studies mostly uses pre-processing stages. 

While in this pre-processing stage, from 45 journals used in this study, there are several methods used 

at this pre-processing stage (Table 3). 

Table 3. Use of pre-processing  

Year Author Pre-Processing 

2018 [29] Binary Image 

2019 [13] Wavelet 

2020 [30] Filtering & Segmentation 

2020 [31] DWT 

2021 [4] Wavelet self-adaptive threshold denoising 

2021 [32] Binary Images 

2022 [33] Segment beat 

2022 [25] Filtering 

2022 [34] ✓ Normalization 

✓ Filtering 

✓ Segmentation 

2023 [27] Converted to grayscale and binary 
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2023 [11] Grey-scaled spectrogram 

2023 [35] Baseline Wandering 

2023 [36] Peak Detection 

2023 [37] Wavelet (db6) 

2023 [28] Binary Image 

2023 [24] DWT 

 

3.3 Feature Extraction 

The second stage is characteristic extraction. In research that uses deep learning, most rarely use the 

stages of trait extraction, because deep learning already includes the stages of characteristic extraction 

(Figure 6). However, there are several studies that still use or still include the stages of extraction of 

this characteristic with different methods.  

 

 

Figure 6. The Difference Between Machine Learning and Deep Learning [38] 

 

Literature review at the trait extraction stage in this study, almost 17% of the papers used the trait 

extraction stage. Table 4 shows some researchers who used the trait extraction stages. 

Table 4. Feature extraction method 

Year Author Feature Extraction 

2020 [31] Segmentation 

2020 [39] ✓ Log-spectrogram 

✓ Mel-spectrogram 

✓ Spectrogram 

✓ MFCC (Mel Frequency Cepstral Coefficient) 

✓ Scalogram 

2021 [40] Continuous Wavelet Transform (CWT) 

2021 [2] Welch dan Discrete Fourier Transform 

2021 [32] CNN 

2022 [33] Spectral Analysis 

2022 [41] DWT (sym4-level 4) 

2023 [35] Continuous Wavelet transform 
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3.4 Identification & Performance 

At this last stage, most of the research is related to classification or identification. The stages of 

classification or identification in this study all use deep learning methods. Among the methods used 

are mostly using CNN Convolution Neural Network (CNN) and several other deep learning methods. 

The use of the method chosen is usually based on the use of data to be used.  

In addition to the selection of methods, at this stage will also usually look for performance from the 

research being developed. Researchers in terms of performance search that are often used include 

accuracy, sensitivity and specificity [14]. Confusion Matrix is used to find the level of accuracy, 

sensitivity and specificity, some even use precision [42]. The application of the Confusion Matrix 

method is one that is used to obtain evaluation results based on matrix tables [43]. Research related to 

ECG from the above research through a deep learning approach can be presented in table 5. 

Table 5. Identification & Performance 

Year 
Author Approach Performance Data 

2016 [16] CNN Accuracy: 99,66%  

2017 [17] CNN Accuracy: 86 %  

2018 [29] CNN Accuracy: 99,1% PhysioNet 

2018 [44]  Accuracy: 96,2 % PhysioNet 

2019 [45] CNN and BRNN Accuracy: 87,69% PhysioNet 

2019 [46] CNN   

2019 [13] ✓ CNN 

✓ LSTM 

  

2020 [47] ✓ CNN 

✓ DBN 

✓ RNN 

✓ LSTM 

✓ GRU 

 ✓ PhysioNet 

✓ MITDB 

✓ PTB 

2020 [30] ✓ CNN 

✓ LSTM 

 PhysioNet 

2020 [9] ✓ CNN 2D  PhysioNet 

2020 [31] ✓ CNN 1D Accuracy: 99,98% 

Sensitivity: 99,9% 

Specificity: 99,89% 

✓ PhysioNet 

✓ 2018 China 

Challenge 

2020 [12] ✓ CNN 

✓ RNN 

✓ LSTM 

✓ GRU 

 PhysioNet 

2020 [39] ✓ Xception 

✓ ResNet 

✓ DenseNet 

 PTB (Physikalisch-

Technische 

Bundesanstalt)-ECG 

database 

2021 [4] ✓ Backpropagation 

✓ Random Forest 

✓ CNN 

 PhysioNet 
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2021 [10] CNN  China Physiological 

Signal Challenge 

(CPSC) 2018 

2021 [48] RNN  PhysioNet 

2021 [40] CNN  PhysioNet 

2021 [49] ✓ CNN 

✓ LSTM 

Accuracy: 95,81% PhysioNet 

2021 [2] ✓ SVM 

✓ CNN 

 PhysioNet 

2021 [32] SVM Accuracy: 97,6% PhysioNet 

2022 [50] CNN Accuracy: 86%  

2022 [51] ✓ CNN-LSTM Accuracy: 99,92%  

2022 [3] ✓ CNN 1D+MLP 

✓ Dense Model 

✓ CNN 1D 

 PhysioNet 

2022 [6] CNN  PhysioNet 

 

2022 [52] CNN  UK Biobank 

 

2022 [53] CNN  Independent 

2022 [33] CNN Accuracy: 99,65% 

Sensitivity: 98,87% 

Specificity: 99,85% 

PhysioNet 

2022 [25] CNN  Independent 

2022 [41] CNN  PTB-XL database 

2022 [34] CNN Accuracy: 92% PhysioNet 

2022 [54] Faster R-CNN   

2023 [27] CNN  ✓ PTB-XL (PTB)  

✓ CPSC 2018 

✓ Chapman 

University and 

Shaoxing 

People’s 

Hospital 

✓ A cohort study 

(Tongji)  

2023 [11] ResNet18 Accuracy: 90,8% PhysioNet 

2023 [55] ResNet  PhysioNet 

2023 [56] CNN 1D   

2023 [35] CNN Accuracy: 91,95% PhysioNet 

2023 [57] CNN Accuracy: 96,2%  

2023 [58] ✓ CNN 

✓ MLP 

✓ Transfer Learning. 

Accuracy: 90% 

Accuracy: 87% 
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Accuracy: 93,8% 

2023 [36] CNN Accuracy: 98,63% 

Sensitivity: 92,41% 

Specificity: 99,06% 

Precision: 92,86% 

PhysioNet 

2023 [37] CNN Accuracy: 98,69% PhysioNet 

2023 [26] CNN  Independent 

2023 [28] CNN  ✓ United States: Keio 

University 

Hospital (KUH) 

✓ Brigham and 

Women’s Hospital 

(BWH) 

✓ Dokkyo Medical 

University Saitama 

Medical Center 

(SMC) 

2023 [59] CNN  PhysioNet 

2023 [60] CNN  PhysioNet 

2023 [24] Temporal CNN Accuracy: 100% DREAMER 

4. Conclusions 

Very diverse research related to the discussion of ECG. These studies strive to obtain the best method 

in their studies. The use of data used in this study from several researchers is also very diverse and 

varied, ranging from utilizing data banks such as PhysioNet, The China Physiological Signal 

Challenge (CPSC) 2018, UK Biobank, ASCERTAIN Dataset, and independent where the data is 

taken directly from patients. The pre-processing stage of 45 journals used 66% used this stage. 

Including trait extraction are also very diverse methods used such as searching for Segmentation, 

Continuous Wavelet Transform (CWT), Welch and Discrete Fourier Transform, Spectral Analysis, 

MFCC (Mel Frequency Cepstral Coefficient), and others. While at the identification stage, all of 

them use deep learning methods such as convolutional neural network (CNN), bi-directional 

recurrent neural network (BRNN), Deep Belief Network (DBN), Recurrent Neural Network (RNN), 

Gated Recurrent Unit (GRU), and others. Of the deep learning methods used, almost 84% use the 

CNN (Convolutional Neural Network) method. Future work has great opportunities for research 

related to electrocardiogram (ECG), one of which is the use of other data that can be extracted 

characteristics of ECG. 
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